Tetraapeirogonal tiling

In geometry, the tetraapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,4}.

tetraapeirogonal tiling
Tetraapeirogonal tiling
Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration(4.)2
Schläfli symbolr{,4} or
rr{,} or
Wythoff symbol2 | 4
| 2
Coxeter diagram
or
Symmetry group[,4], (*42)
[,], (*2)
DualOrder-4-infinite rhombille tiling
PropertiesVertex-transitive edge-transitive

Uniform constructions

There are 3 lower symmetry uniform construction, one with two colors of apeirogons, one with two colors of squares, and one with two colors of each:

Symmetry (*∞42)
[∞,4]
(*∞33)
[1+,∞,4] = [(∞,4,4)]
(*∞∞2)
[∞,4,1+] = [∞,∞]
(*∞2∞2)
[1+,∞,4,1+]
Coxeter = = =
Schläfli r{∞,4} r{4,∞}12 r{∞,4}12=rr{∞,∞} r{∞,4}14
Coloring
Dual

Symmetry

The dual to this tiling represents the fundamental domains of *∞2∞2 symmetry group. The symmetry can be doubled by adding mirrors on either diagonal of the rhombic domains, creating *∞∞2 and *∞44 symmetry.

*n42 symmetry mutations of quasiregular tilings: (4.n)2
Symmetry
*4n2
[n,4]
Spherical Euclidean Compact hyperbolic Paracompact Noncompact
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
 
[ni,4]
Figures
Config. (4.3)2 (4.4)2 (4.5)2 (4.6)2 (4.7)2 (4.8)2 (4.)2 (4.ni)2
Paracompact uniform tilings in [,4] family
{,4} t{,4} r{,4} 2t{,4}=t{4,} 2r{,4}={4,} rr{,4} tr{,4}
Dual figures
V4 V4.. V(4.)2 V8.8. V4 V43. V4.8.
Alternations
[1+,,4]
(*44)
[+,4]
(*2)
[,1+,4]
(*22)
[,4+]
(4*)
[,4,1+]
(*2)
[(,4,2+)]
(2*2)
[,4]+
(42)

=

=
h{,4} s{,4} hr{,4} s{4,} h{4,} hrr{,4} s{,4}
Alternation duals
V(.4)4 V3.(3.)2 V(4..4)2 V3..(3.4)2 V V.44 V3.3.4.3.
Paracompact uniform tilings in [,] family

=
=

=
=

=
=

=
=

=
=

=

=
{,} t{,} r{,} 2t{,}=t{,} 2r{,}={,} rr{,} tr{,}
Dual tilings
V V.. V(.)2 V.. V V4..4. V4.4.
Alternations
[1+,,]
(*2)
[+,]
(*)
[,1+,]
(*)
[,+]
(*)
[,,1+]
(*2)
[(,,2+)]
(2*)
[,]+
(2)
h{,} s{,} hr{,} s{,} h2{,} hrr{,} sr{,}
Alternation duals
V(.) V(3.)3 V(.4)4 V(3.)3 V V(4..4)2 V3.3..3.

See also

References

    • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, "The Hyperbolic Archimedean Tessellations")
    • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.