Lapaquistat

Lapaquistat (TAK-475) is a cholesterol-lowering drug candidate that was abandoned before being marketed.

Lapaquistat
Clinical data
ATC code
  • none
Identifiers
IUPAC name
  • (1-{[(3R,5S)-7-chloro-5-(2,3-dimethoxyphenyl)-1-(3-hydroxy-2,2-dimethylpropyl)-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]acetyl}piperidin-4-yl)acetic acid
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC31H39ClN2O8
Molar mass603.11 g·mol−1
3D model (JSmol)
SMILES
  • O=C(O)CC4CCN(C(=O)C[C@H]1O[C@@H](c2cc(Cl)ccc2N(C1=O)CC(C)(C)CO)c3cccc(OC)c3OC)CC4
InChI
  • InChI=1S/C31H39ClN2O8/c1-31(2,18-35)17-34-23-9-8-20(32)15-22(23)28(21-6-5-7-24(40-3)29(21)41-4)42-25(30(34)39)16-26(36)33-12-10-19(11-13-33)14-27(37)38/h5-9,15,19,25,28,35H,10-14,16-18H2,1-4H3,(H,37,38)/t25-,28-/m1/s1 Y
  • Key:HDGUKVZPMPJBFK-LEAFIULHSA-N Y
 NY (what is this?)  (verify)

Unlike statins, which inhibit HMG-CoA reductase, lapaquistat metabolites inhibit squalene synthase, which is further downstream in the synthesis of cholesterol. It is hoped that side effects can be reduced by not disturbing the mevalonate pathway, which is important for other biochemical molecules besides cholesterol. However, there is increasing evidence that statins (which inhibit the mevalonate pathway) may be clinically useful because they affect these other molecules (including protein prenylation).[1]

On March 28, 2008, Takeda halted further development of lapaquistat.[2] While effective at lowering low-density lipoprotein cholesterol in a dose-dependent manner, development of the drug was ceased due to observations in clinical trials that it might cause liver damage in the high dose trial groups.[3] Data from knockout mouse studies suggests that accumulation of high levels of the metabolic substrate of squalene synthase and derivatives thereof account for the liver toxicity of squalene synthase inhibitors,[4] and efforts to mitigate this substrate accumulation would likely be necessary for clinical success of a squalene synthase inhibitor [5]

References

Further reading

  • Davidson MH (January 2007). "Squalene synthase inhibition: a novel target for the management of dyslipidemia". Curr Atheroscler Rep. 9 (1): 78–80. doi:10.1007/BF02693932. PMID 17169251. S2CID 28176904.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.