Vitamin D5

Vitamin D5 (sitocalciferol) is a form of vitamin D.

Vitamin D5
Names
IUPAC name
(1S,3Z)-3-[(2E)-2-[(1R,3aS,7aR)-1-[(1R,4S)-4-ethyl-1,5-dimethylhexyl]-7a-methyl-2,3,3a,5,6,7-hexahydro-1H-inden-4-ylidene]ethylidene]-4-methylene-1-cyclohexanol
Other names
Sitocalciferol
(5Z,7E)-(3S)-9,10-secoporiferasta-5,7,10(19)-trien-3-ol
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
InChI
  • InChI=1S/C29H48O/c1-7-23(20(2)3)12-10-22(5)27-16-17-28-24(9-8-18-29(27,28)6)13-14-25-19-26(30)15-11-21(25)4/h13-14,20,22-23,26-28,30H,4,7-12,15-19H2,1-3,5-6H3/b24-13+,25-14-/t22-,23+,26+,27-,28+,29-/m1/s1 Y
    Key: RMDJVOZETBHEAR-GHTRHTQZSA-N Y
  • InChI=1/C29H48O/c1-7-23(20(2)3)12-10-22(5)27-16-17-28-24(9-8-18-29(27,28)6)13-14-25-19-26(30)15-11-21(25)4/h13-14,20,22-23,26-28,30H,4,7-12,15-19H2,1-3,5-6H3/b24-13+,25-14-/t22-,23+,26+,27-,28+,29-/m1/s1
    Key: RMDJVOZETBHEAR-GHTRHTQZBN
SMILES
  • O[C@@H]1CC(\C(=C)CC1)=C\C=C2/CCC[C@]3([C@H]2CC[C@@H]3[C@H](C)CC[C@H](CC)C(C)C)C
Properties
Chemical formula
C29H48O
Molar mass 412.702 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Research

Analogs of calcitriol, a form of vitamin D3, have been proposed for use as antitumor agents.[1][2][3] Studies on vitamin D3 have shown inhibition of cell proliferation in prostate cancer, but high doses of vitamin D3 result in hypercalcemia. The effects of vitamin D5 on prostate cancer have also been studied, and unlike vitamin D3, vitamin D5 does not cause hypercalcemia while inhibiting tumor cell proliferation.[4] The most researched analogue of vitamin D5 as an antitumor agent is 1α-hydroxyvitamin D5.

1α-Hydroxyvitamin D5

1α-Hydroxyvitamin D5 is a chemical derivative of vitamin D5. The motive to study 1α-hydroxyvitamin D5 as a potential pharmaceutical drug stemmed from the tendency of calcitriol, a natural metabolite produced in the kidney, to cause toxic hypercalcemia in patients when dosed at concentrations needed to interrupt prostate cancer cells' cycle and stimulate apoptosis.[5][6] And while supplementation with dexamethasone decreases hypercalcemia,[7] bypassing it with an equally effective tumor suppressant would reduce patient cost and stress. Thus, the therapeutic effects of 1α-Hydroxyvitamin D5 as a potential antitumor agent without the side effects of calcitriol became a topic of study.

1α-Hydroxyvitamin D5 was first synthesized in 1997 by researchers in the Department of Chemistry at the University of Chicago, under Robert M. Moriarty and Dragos Albinescu. By 2005, the group had revised its synthesis method for a more streamlined, higher yield-producing route. It involved the photochemical conversion of precursor 7-dehydrositosteryl acetate to contain a conjugated triene system, a hallmark of this analog, followed by hydroxylation, photoisomerization, and deprotection steps. Their overall yield was 48%.[8]

See also

References

  1. Mehta RG, Moriarty RM, Mehta RR, Penmasta R, Lazzaro G, Constantinou A, Guo L (February 1997). "Prevention of preneoplastic mammary lesion development by a novel vitamin D analogue, 1alpha-hydroxyvitamin D5". Journal of the National Cancer Institute. 89 (3): 212–8. doi:10.1093/jnci/89.3.212. PMID 9017001.
  2. Murillo G, Mehta RG (October 2005). "Chemoprevention of chemically-induced mammary and colon carcinogenesis by 1alpha-hydroxyvitamin D5". The Journal of Steroid Biochemistry and Molecular Biology. 97 (1–2): 129–36. doi:10.1016/j.jsbmb.2005.06.008. PMID 16051482. S2CID 24400116.
  3. Mehta RG (October 2004). "Stage-specific inhibition of mammary carcinogenesis by 1alpha-hydroxyvitamin D5". European Journal of Cancer. 40 (15): 2331–7. doi:10.1016/j.ejca.2004.05.025. PMID 15454260.
  4. Mooso B, Madhav A, Johnson S, Roy M, Moore ME, Moy C, Loredo GA, Mehta RG, Vaughan AT, Ghosh PM (November 2010). "Androgen Receptor regulation of Vitamin D receptor in response of castration-resistant prostate cancer cells to 1α-Hydroxyvitamin D5 - a calcitriol analog". Genes & Cancer. 1 (9): 927–940. doi:10.1177/1947601910385450. PMC 3089062. PMID 21552398.
  5. Beer, Tomasz M.; Myrthue, Anne (March 2004). "Calcitriol in cancer treatment: from the lab to the clinic". Molecular Cancer Therapeutics. 3 (3): 373–381. ISSN 1535-7163. PMID 15026558.
  6. Mooso, Benjamin; Madhav, Anisha; Johnson, Sherra; Roy, Mohana; Moore, Mary E.; Moy, Christabel; Loredo, Grace A.; Mehta, Rajendra G.; Vaughan, Andrew T.M.; Ghosh, Paramita M. (September 2010). "Androgen Receptor Regulation of Vitamin D Receptor in Response of Castration-Resistant Prostate Cancer Cells to 1α-Hydroxyvitamin D5". Genes & Cancer. 1 (9): 927–940. doi:10.1177/1947601910385450. ISSN 1947-6019. PMC 3089062. PMID 21552398.
  7. Johnson, Candace S.; Muindi, Josephia R.; Hershberger, Pamela A.; Trump, Donald L. (July 2006). "The antitumor efficacy of calcitriol: preclinical studies". Anticancer Research. 26 (4A): 2543–2549. ISSN 0250-7005. PMID 16886662.
  8. Moriarty, Robert M.; Albinescu, Dragos (September 2005). "Synthesis of 1α-Hydroxyvitamin D5Using a Modified Two Wavelength Photolysis for Vitamin D Formation". The Journal of Organic Chemistry. 70 (19): 7624–7628. doi:10.1021/jo050853f. ISSN 0022-3263. PMID 16149791.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.