Titan (moon)

Titan is the largest moon of Saturn and the second-largest natural satellite in the Solar System. It is the only moon known to have a dense atmosphere, and is the only known object in space other than Earth on which clear evidence of stable bodies of surface liquid has been found.[15]

Titan
Pictured in 2012 in natural color. The thick atmosphere is orange due to a dense organonitrogen haze.
Discovery
Discovered byChristiaan Huygens
Discovery dateMarch 25, 1655
Designations
Designation
Saturn VI
Pronunciation/ˈttən/ (listen)[1]
Named after
Τῑτάν Tītan
AdjectivesTitanian[2] or Titanean[3] (both /tˈtniən/)[4][5]
Orbital characteristics[6]
Periapsis1186680 km
Apoapsis1257060 km
1221870 km
Eccentricity0.0288
15.945 d
Average orbital speed
5.57 km/s (calculated)
Inclination0.34854° (to Saturn's equator)
Satellite ofSaturn
Physical characteristics
Mean radius
2574.73±0.09 km (0.404 Earth's)[7] (1.480 Moon's)
8.3×107 km2 (0.163 Earth's) (2.188 Moon's)
Volume7.16×1010 km3 (0.066 Earth's) (3.3 Moon's)
Mass(1.3452±0.0002)×1023 kg
(0.0225 Earth's)[8] (1.829 Moon's)
Mean density
1.8798±0.0044 g/cm3[8]
Surface gravity
1.352 m/s2 (0.138 g) (0.835 Moon's)
Moment of inertia factor
0.3414±0.0005[9] (estimate)
2.639 km/s (0.236 Earth's) (1.11 Moon's)
Synodic rotation period
Synchronous
Zero (to the orbital plane);
27° (to the sun)
Albedo0.22[10]
Temperature93.7 K (−179.5 °C)[11]
8.2[12] to 9.0
Atmosphere
Surface pressure
146.7 kPa (1.45 atm)
Composition by volumeVariable

Stratosphere:
98.4% nitrogen (N
2
),
1.4% methane (CH
4
),
0.2% hydrogen (H
2
);

Lower troposphere:
95.0% N
2
, 4.9% CH
4
;[13]
97% N
2
,
2.7±0.1% CH
4
,
0.1–0.2% H
2
[14]

    Titan is one of the seven gravitationally rounded moons in orbit around Saturn, and the second most distant from Saturn of those seven. Frequently described as a planet-like moon, Titan is 50% larger (in diameter) than Earth's Moon and 80% more massive. It is the second-largest moon in the Solar System after Jupiter's moon Ganymede, and is larger than the planet Mercury, but only 40% as massive.

    Discovered in 1655 by the Dutch astronomer Christiaan Huygens, Titan was the first known moon of Saturn, and the sixth known planetary satellite (after Earth's moon and the four Galilean moons of Jupiter). Titan orbits Saturn at 20 Saturn radii. From Titan's surface, Saturn subtends an arc of 5.09 degrees, and if it were visible through the moon's thick atmosphere, it would appear 11.4 times larger in the sky, in diameter, than the Moon from Earth, which subtends 0.48° of arc.

    Titan is primarily composed of ice and rocky material, which is likely differentiated into a rocky core surrounded by various layers of ice, including a crust of ice Ih and a subsurface layer of ammonia-rich liquid water.[16] Much as with Venus before the Space Age, the dense opaque atmosphere prevented understanding of Titan's surface until the Cassini–Huygens mission in 2004 provided new information, including the discovery of liquid hydrocarbon lakes in Titan's polar regions. The geologically young surface is generally smooth, with few impact craters, although mountains and several possible cryovolcanoes have been found.

    The atmosphere of Titan is largely nitrogen; minor components lead to the formation of methane and ethane clouds and heavy organonitrogen haze. The climate—including wind and rain—creates surface features similar to those of Earth, such as dunes, rivers, lakes, seas (probably of liquid methane and ethane), and deltas, and is dominated by seasonal weather patterns as on Earth. With its liquids (both surface and subsurface) and robust nitrogen atmosphere, Titan's methane cycle bears a striking similarity to Earth's water cycle, albeit at the much lower temperature of about 94 K (−179 °C; −290 °F).

    History

    Discovery

    Christiaan Huygens discovered Titan in 1655.

    Titan was discovered on March 25, 1655, by the Dutch astronomer Christiaan Huygens.[17][18] Huygens was inspired by Galileo's discovery of Jupiter's four largest moons in 1610 and his improvements in telescope technology. Christiaan, with the help of his elder brother Constantijn Huygens Jr., began building telescopes around 1650 and discovered the first observed moon orbiting Saturn with one of the telescopes they built.[19] It was the sixth moon ever discovered, after Earth's Moon and the Galilean moons of Jupiter.[20]

    Naming

    Huygens named his discovery Saturni Luna (or Luna Saturni, Latin for "moon of Saturn"), publishing in the 1655 tract De Saturni Luna Observatio Nova (A New Observation of Saturn's Moon).[21] After Giovanni Domenico Cassini published his discoveries of four more moons of Saturn between 1673 and 1686, astronomers fell into the habit of referring to these and Titan as Saturn I through V (with Titan then in fourth position). Other early epithets for Titan include "Saturn's ordinary satellite".[22] The International Astronomical Union officially numbers Titan as Saturn VI.[23]

    The name Titan, and the names of all seven satellites of Saturn then known, came from John Herschel (son of William Herschel, discoverer of two other Saturnian moons, Mimas and Enceladus), in his 1847 publication Results of Astronomical Observations Made during the Years 1834, 5, 6, 7, 8, at the Cape of Good Hope.[24][25] Numerous small moons have been discovered around Saturn since then.[26] Saturnian moons are named after mythological giants. The name Titan comes from the Titans, a race of immortals in Greek mythology.[23]

    Orbit and rotation

    Titan's orbit (highlighted in red) among the other large inner moons of Saturn. The moons outside its orbit are (from the outside to the inside) Iapetus and Hyperion; those inside are Rhea, Dione, Tethys, Enceladus, and Mimas.

    Titan orbits Saturn once every 15 days 22 hours. Like Earth's Moon and many of the satellites of the giant planets, its rotational period (its day) is identical to its orbital period; Titan is tidally locked in synchronous rotation with Saturn, and permanently shows one face to the planet. Longitudes on Titan are measured westward, starting from the meridian passing through this point.[27] Its orbital eccentricity is 0.0288, and the orbital plane is inclined 0.348 degrees relative to the Saturnian equator,[6] and hence also about a third of a degree off of the equatorial ring plane. Viewed from Earth, Titan reaches an angular distance of about 20 Saturn radii (just over 1,200,000 kilometers (750,000 mi)) from Saturn and subtends a disk 0.8 arcseconds in diameter.

    The small, irregularly shaped satellite Hyperion is locked in a 3:4 orbital resonance with Titan. Hyperion probably formed in a stable orbital island, whereas the massive Titan absorbed or ejected any other bodies that made close approaches.[28]

    Bulk characteristics

    Size comparison: Titan (lower left) with the Moon and Earth (top and right)
    A model of Titan's internal structure showing ice-six layer

    Titan is 5,149.46 kilometers (3,199.73 mi) in diameter,[7] 1.06 times that of the planet Mercury, 1.48 that of the Moon, and 0.40 that of Earth. Titan is the tenth-largest object in the solar system, including the Sun. Before the arrival of Voyager 1 in 1980, Titan was thought to be slightly larger than Ganymede (diameter 5,262 kilometers (3,270 mi)) and thus the largest moon in the Solar System; this was an overestimation caused by Titan's dense, opaque atmosphere, with a haze layer 100-200 kilometres above its surface. This increases its apparent diameter.[29] Titan's diameter and mass (and thus its density) are similar to those of the Jovian moons Ganymede and Callisto.[30] Based on its bulk density of 1.88 g/cm3, Titan's composition is half ice and half rocky material. Though similar in composition to Dione and Enceladus, it is denser due to gravitational compression. It has a mass 1/4226 that of Saturn, making it the largest moon of the gas giants relative to the mass of its primary. It is second in terms of relative diameter of moons to a gas giant; Titan being 1/22.609 of Saturn's diameter, Triton is larger in diameter relative to Neptune at 1/18.092.

    Titan is probably partially differentiated into distinct layers with a 3,400-kilometer (2,100 mi) rocky center.[31] This rocky center is surrounded by several layers composed of different crystalline forms of ice.[32] Its interior may still be hot enough for a liquid layer consisting of a "magma" composed of water and ammonia between the ice Ih crust and deeper ice layers made of high-pressure forms of ice. The presence of ammonia allows water to remain liquid even at a temperature as low as 176 K (−97 °C) (for eutectic mixture with water).[33] The Cassini probe discovered the evidence for the layered structure in the form of natural extremely-low-frequency radio waves in Titan's atmosphere. Titan's surface is thought to be a poor reflector of extremely-low-frequency radio waves, so they may instead be reflecting off the liquid–ice boundary of a subsurface ocean.[34] Surface features were observed by the Cassini spacecraft to systematically shift by up to 30 kilometers (19 mi) between October 2005 and May 2007, which suggests that the crust is decoupled from the interior, and provides additional evidence for an interior liquid layer.[35] Further supporting evidence for a liquid layer and ice shell decoupled from the solid core comes from the way the gravity field varies as Titan orbits Saturn.[36] Comparison of the gravity field with the RADAR-based topography observations[37] also suggests that the ice shell may be substantially rigid.[38][39]

    Formation

    The moons of Jupiter and Saturn are thought to have formed through co-accretion, a similar process to that believed to have formed the planets in the Solar System. As the young gas giants formed, they were surrounded by discs of material that gradually coalesced into moons. Whereas Jupiter possesses four large satellites in highly regular, planet-like orbits, Titan overwhelmingly dominates Saturn's system and possesses a high orbital eccentricity not immediately explained by co-accretion alone. A proposed model for the formation of Titan is that Saturn's system began with a group of moons similar to Jupiter's Galilean satellites, but that they were disrupted by a series of giant impacts, which would go on to form Titan. Saturn's mid-sized moons, such as Iapetus and Rhea, were formed from the debris of these collisions. Such a violent beginning would also explain Titan's orbital eccentricity.[40]

    A 2014 analysis of Titan's atmospheric nitrogen suggested that it was possibly sourced from material similar to that found in the Oort cloud and not from sources present during co-accretion of materials around Saturn.[41]

    Atmosphere

    True-color image of layers of haze in Titan's atmosphere

    Titan is the only known moon with a significant atmosphere,[42] and its atmosphere is the only nitrogen-rich dense atmosphere in the Solar System aside from Earth's. Observations of it made in 2004 by Cassini suggest that Titan is a "super rotator", like Venus, with an atmosphere that rotates much faster than its surface.[43] Observations from the Voyager space probes have shown that Titan's atmosphere is denser than Earth's, with a surface pressure about 1.45 atm. It is also about 1.19 times as massive as Earth's overall,[44] or about 7.3 times more massive on a per surface area basis. Opaque haze layers block most visible light from the Sun and other sources and obscure Titan's surface features.[45] Titan's lower gravity means that its atmosphere is far more extended than Earth's.[46] The atmosphere of Titan is opaque at many wavelengths and as a result, a complete reflectance spectrum of the surface is impossible to acquire from orbit.[47] It was not until the arrival of the Cassini–Huygens spacecraft in 2004 that the first direct images of Titan's surface were obtained.[48]

    Titan's atmospheric composition is nitrogen (97%), methane (2.7±0.1%), and hydrogen (0.1–0.2%), with trace amounts of other gases.[14] There are trace amounts of other hydrocarbons, such as ethane, diacetylene, methylacetylene, acetylene and propane, and of other gases, such as cyanoacetylene, hydrogen cyanide, carbon dioxide, carbon monoxide, cyanogen, argon and helium.[13] The hydrocarbons are thought to form in Titan's upper atmosphere in reactions resulting from the breakup of methane by the Sun's ultraviolet light, producing a thick orange smog.[49] Titan spends 95% of its time within Saturn's magnetosphere, which may help shield it from the solar wind.[50]

    Energy from the Sun should have converted all traces of methane in Titan's atmosphere into more complex hydrocarbons within 50 million years—a short time compared to the age of the Solar System. This suggests that methane must be replenished by a reservoir on or within Titan itself.[51] The ultimate origin of the methane in its atmosphere may be its interior, released via eruptions from cryovolcanoes.[52][53][54][55]

    Trace organic gases in Titan's atmosphere—HNC (left) and HC3N (right).

    On April 3, 2013, NASA reported that complex organic chemicals, collectively called tholins, likely arise on Titan, based on studies simulating the atmosphere of Titan.[56]

    External video
    Occultation of the star SAO 164648 by Titan on 2022 July 9. The changes in brightness are gradual due to the Titan's atmosphere.

    On June 6, 2013, scientists at the IAA-CSIC reported the detection of polycyclic aromatic hydrocarbons in the upper atmosphere of Titan.[57][58]

    On September 30, 2013, propene was detected in the atmosphere of Titan by NASA's Cassini spacecraft, using its composite infrared spectrometer (CIRS).[59] This is the first time propene has been found on any moon or planet other than Earth and is the first chemical found by the CIRS. The detection of propene fills a mysterious gap in observations that date back to NASA's Voyager 1 spacecraft's first close planetary flyby of Titan in 1980, during which it was discovered that many of the gases that make up Titan's brown haze were hydrocarbons, theoretically formed via the recombination of radicals created by the Sun's ultraviolet photolysis of methane.[49]

    On October 24, 2014, methane was found in polar clouds on Titan.[60][61]

    Polar clouds, made of methane, on Titan (left) compared with polar clouds on Earth (right), which are made of water or water ice.

    Climate

    Atmospheric polar vortex over Titan's south pole

    Titan's surface temperature is about 94 K (−179.2 °C). At this temperature, water ice has an extremely low vapor pressure, so the little water vapor present appears limited to the stratosphere.[62] Titan receives about 1% as much sunlight as Earth.[63] Before sunlight reaches the surface, about 90% has been absorbed by the thick atmosphere, leaving only 0.1% of the amount of light Earth receives.[64]

    Atmospheric methane creates a greenhouse effect on Titan's surface, without which Titan would be much colder.[65] Conversely, haze in Titan's atmosphere contributes to an anti-greenhouse effect by absorbing sunlight, cancelling a portion of the greenhouse effect and making its surface significantly colder than its upper atmosphere.[66]

    Methane clouds (animated; July 2014).[67]

    Titan's clouds, probably composed of methane, ethane or other simple organics, are scattered and variable, punctuating the overall haze.[29] The findings of the Huygens probe indicate that Titan's atmosphere periodically rains liquid methane and other organic compounds onto its surface.[68]

    Clouds typically cover 1% of Titan's disk, though outburst events have been observed in which the cloud cover rapidly expands to as much as 8%. One hypothesis asserts that the southern clouds are formed when heightened levels of sunlight during the southern summer generate uplift in the atmosphere, resulting in convection. This explanation is complicated by the fact that cloud formation has been observed not only after the southern summer solstice but also during mid-spring. Increased methane humidity at the south pole possibly contributes to the rapid increases in cloud size.[69] It was summer in Titan's southern hemisphere until 2010, when Saturn's orbit, which governs Titan's motion, moved Titan's northern hemisphere into the sunlight.[70] When the seasons switch, it is expected that ethane will begin to condense over the south pole.[71]

    Surface features

    Global geologic map of Titan (2019)[15]

    The surface of Titan has been described as "complex, fluid-processed, [and] geologically young".[72] Titan has been around since the Solar System's formation, but its surface is much younger, between 100 million and 1 billion years old. Geological processes may have reshaped Titan's surface.[73] Titan's atmosphere is four times as thick as Earth's,[74] making it difficult for astronomical instruments to image its surface in the visible light spectrum.[75] The Cassini spacecraft used infrared instruments, radar altimetry and synthetic aperture radar (SAR) imaging to map portions of Titan during its close fly-bys. The first images revealed a diverse geology, with both rough and smooth areas. There are features that may be volcanic in origin, disgorging water mixed with ammonia onto the surface. There is also evidence that Titan's ice shell may be substantially rigid,[38][39] which would suggest little geologic activity.[76] There are also streaky features, some of them hundreds of kilometers in length, that appear to be caused by windblown particles.[77][78] Examination has also shown the surface to be relatively smooth; the few objects that seem to be impact craters appeared to have been filled in, perhaps by raining hydrocarbons or volcanoes. Radar altimetry suggests height variation is low, typically no more than 150 meters. Occasional elevation changes of 500 meters have been discovered and Titan has mountains that sometimes reach several hundred meters to more than 1 kilometer in height.[79]

    Titan's surface is marked by broad regions of bright and dark terrain. These include Xanadu, a large, reflective equatorial area about the size of Australia. It was first identified in infrared images from the Hubble Space Telescope in 1994, and later viewed by the Cassini spacecraft. The convoluted region is filled with hills and cut by valleys and chasms.[80] It is criss-crossed in places by dark lineaments—sinuous topographical features resembling ridges or crevices. These may represent tectonic activity, which would indicate that Xanadu is geologically young. Alternatively, the lineaments may be liquid-formed channels, suggesting old terrain that has been cut through by stream systems.[81] There are dark areas of similar size elsewhere on Titan, observed from the ground and by Cassini; at least one of these, Ligeia Mare, Titan's second-largest sea, is almost a pure methane sea.[82][83]

    Titan mosaic from a Cassini flyby. The large dark region is Shangri-La.
    Titan in false color showing surface details and atmosphere. Xanadu is the bright region at the bottom-center.
    Titan composite image in infrared. It features the dark, dune-filled regions Fensal (north) and Aztlan (south).

    Lakes

    Titan lakes (September 11, 2017)
    False-color Cassini radar mosaic of Titan's north polar region. Blue coloring indicates low radar reflectivity, caused by hydrocarbon seas, lakes and tributary networks filled with liquid ethane, methane and dissolved N
    2
    .[14] About half of the large body at lower left, Kraken Mare, is shown. Ligeia Mare is at lower right.
    Mosaic of three Huygens images of channel system on Titan
    Rimmed lakes of Titan
    (artist concept)

    The possibility of hydrocarbon seas on Titan was first suggested based on Voyager 1 and 2 data that showed Titan to have a thick atmosphere of approximately the correct temperature and composition to support them, but direct evidence was not obtained until 1995 when data from Hubble and other observations suggested the existence of liquid methane on Titan, either in disconnected pockets or on the scale of satellite-wide oceans, similar to water on Earth.[84]

    The Cassini mission confirmed the former hypothesis. When the probe arrived in the Saturnian system in 2004, it was hoped that hydrocarbon lakes or oceans would be detected from the sunlight reflected off their surface, but no specular reflections were initially observed.[85] Near Titan's south pole, an enigmatic dark feature named Ontario Lacus was identified[86] (and later confirmed to be a lake).[87] A possible shoreline was also identified near the pole via radar imagery.[88] Following a flyby on July 22, 2006, in which the Cassini spacecraft's radar imaged the northern latitudes (that were then in winter), several large, smooth (and thus dark to radar) patches were seen dotting the surface near the pole.[89] Based on the observations, scientists announced "definitive evidence of lakes filled with methane on Saturn's moon Titan" in January 2007.[90][91] The Cassini–Huygens team concluded that the imaged features are almost certainly the long-sought hydrocarbon lakes, the first stable bodies of surface liquid found outside Earth.[90] Some appear to have channels associated with liquid and lie in topographical depressions.[90] The liquid erosion features appear to be a very recent occurrence: channels in some regions have created surprisingly little erosion, suggesting erosion on Titan is extremely slow, or some other recent phenomena may have wiped out older riverbeds and landforms.[73] Overall, the Cassini radar observations have shown that lakes cover only a small percentage of the surface, making Titan much drier than Earth.[92] Most of the lakes are concentrated near the poles (where the relative lack of sunlight prevents evaporation), but several long-standing hydrocarbon lakes in the equatorial desert regions have also been discovered, including one near the Huygens landing site in the Shangri-La region, which is about half the size of the Great Salt Lake in Utah, USA. The equatorial lakes are probably "oases", i.e. the likely supplier is underground aquifers.[93]

    Evolving feature in Ligeia Mare

    In June 2008, the Visual and Infrared Mapping Spectrometer on Cassini confirmed the presence of liquid ethane beyond doubt in Ontario Lacus.[94] On December 21, 2008, Cassini passed directly over Ontario Lacus and observed specular reflection in radar. The strength of the reflection saturated the probe's receiver, indicating that the lake level did not vary by more than 3 mm (implying either that surface winds were minimal, or the lake's hydrocarbon fluid is viscous).[95][96]

    Near-infrared radiation from the Sun reflecting off Titan's hydrocarbon seas

    On July 8, 2009, Cassini's VIMS observed a specular reflection indicative of a smooth, mirror-like surface, off what today is called Jingpo Lacus, a lake in the north polar region shortly after the area emerged from 15 years of winter darkness. Specular reflections are indicative of a smooth, mirror-like surface, so the observation corroborated the inference of the presence of a large liquid body drawn from radar imaging.[97][98]

    Early radar measurements made in July 2009 and January 2010 indicated that Ontario Lacus was extremely shallow, with an average depth of 0.4–3 m, and a maximum depth of 3 to 7 m (9.8 to 23.0 ft).[99] In contrast, the northern hemisphere's Ligeia Mare was initially mapped to depths exceeding 8 m, the maximum discernable by the radar instrument and the analysis techniques of the time.[99] Later science analysis, released in 2014, more fully mapped the depths of Titan's three methane seas and showed depths of more than 200 meters (660 ft). Ligeia Mare averages from 20 to 40 m (66 to 131 ft) in depth, while other parts of Ligeia did not register any radar reflection at all, indicating a depth of more than 200 m (660 ft). While only the second largest of Titan's methane seas, Ligeia "contains enough liquid methane to fill three Lake Michigans".[100]

    In May 2013, Cassini's radar altimeter observed Titan's Vid Flumina channels, defined as a drainage network connected to Titan's second largest hydrocarbon sea, Ligeia Mare. Analysis of the received altimeter echoes showed that the channels are located in deep (up to ~570 m), steep-sided, canyons and have strong specular surface reflections that indicate they are currently filled with liquid. Elevations of the liquid in these channels are at the same level as Ligeia Mare to within a vertical precision of about 0.7 m, consistent with the interpretation of drowned river valleys. Specular reflections are also observed in lower order tributaries elevated above the level of Ligeia Mare, consistent with drainage feeding into the main channel system. This is likely the first direct evidence of the presence of liquid channels on Titan and the first observation of hundred-meter deep canyons on Titan. Vid Flumina canyons are thus drowned by the sea but there are a few isolated observations to attest to the presence of surface liquids standing at higher elevations.[101]

    During six flybys of Titan from 2006 to 2011, Cassini gathered radiometric tracking and optical navigation data from which investigators could roughly infer Titan's changing shape. The density of Titan is consistent with a body that is about 60% rock and 40% water. The team's analyses suggest that Titan's surface can rise and fall by up to 10 metres during each orbit. That degree of warping suggests that Titan's interior is relatively deformable, and that the most likely model of Titan is one in which an icy shell dozens of kilometres thick floats atop a global ocean.[102] The team's findings, together with the results of previous studies, hint that Titan's ocean may lie no more than 100 kilometers (62 mi) below its surface.[102][103] On July 2, 2014, NASA reported the ocean inside Titan may be as salty as the Dead Sea.[104][105] On September 3, 2014, NASA reported studies suggesting methane rainfall on Titan may interact with a layer of icy materials underground, called an "alkanofer", to produce ethane and propane that may eventually feed into rivers and lakes.[106]

    In 2016, Cassini found the first evidence of fluid-filled channels on Titan, in a series of deep, steep-sided canyons flowing into Ligeia Mare. This network of canyons, dubbed Vid Flumina, range in depth from 240 to 570 m and have sides as steep as 40°. They are believed to have formed either by crustal uplifting, like Earth's Grand Canyon, or a lowering of sea level, or perhaps a combination of the two. The depth of erosion suggests that liquid flows in this part of Titan are long-term features that persist for thousands of years.[107]

    Photo of infrared specular reflection off Jingpo Lacus, a lake in the north polar region Perspective radar view of Bolsena Lacus (lower right) and other northern hemisphere hydrocarbon lakes
    Contrasting images of the number of lakes in Titan's northern hemisphere (left) and southern hemisphere (right) Two images of Titan's southern hemisphere acquired one year apart, showing changes in south polar lakes

    Impact craters

    Radar image of a 139 km-diameter[108] impact crater on Titan's surface, showing a smooth floor, rugged rim, and possibly a central peak.

    Radar, SAR and imaging data from Cassini have revealed few impact craters on Titan's surface.[73] These impacts appear to be relatively young, compared to Titan's age.[73] The few impact craters discovered include a 440-kilometer-wide (270 mi) two-ring impact basin named Menrva seen by Cassini's ISS as a bright-dark concentric pattern.[109] A smaller, 60-kilometer-wide (37 mi), flat-floored crater named Sinlap[110] and a 30 km (19 mi) crater with a central peak and dark floor named Ksa have also been observed.[111] Radar and Cassini imaging have also revealed "crateriforms", circular features on the surface of Titan that may be impact related, but lack certain features that would make identification certain. For example, a 90-kilometer-wide (56 mi) ring of bright, rough material known as Guabonito has been observed by Cassini.[112] This feature is thought to be an impact crater filled in by dark, windblown sediment. Several other similar features have been observed in the dark Shangri-la and Aaru regions. Radar observed several circular features that may be craters in the bright region Xanadu during Cassini's April 30, 2006 flyby of Titan.[113]

    Ligeia Mare – SAR and clearer despeckled views.[114]

    Many of Titan's craters or probable craters display evidence of extensive erosion, and all show some indication of modification.[108] Most large craters have breached or incomplete rims, despite the fact that some craters on Titan have relatively more massive rims than those anywhere else in the Solar System. There is little evidence of formation of palimpsests through viscoelastic crustal relaxation, unlike on other large icy moons.[108] Most craters lack central peaks and have smooth floors, possibly due to impact-generation or later eruption of cryovolcanic lava. Infill from various geological processes is one reason for Titan's relative deficiency of craters; atmospheric shielding also plays a role. It is estimated that Titan's atmosphere reduces the number of craters on its surface by a factor of two.[115]

    The limited high-resolution radar coverage of Titan obtained through 2007 (22%) suggested the existence of nonuniformities in its crater distribution. Xanadu has 2–9 times more craters than elsewhere. The leading hemisphere has a 30% higher density than the trailing hemisphere. There are lower crater densities in areas of equatorial dunes and in the north polar region (where hydrocarbon lakes and seas are most common).[108]

    Pre-Cassini models of impact trajectories and angles suggest that where the impactor strikes the water ice crust, a small amount of ejecta remains as liquid water within the crater. It may persist as liquid for centuries or longer, sufficient for "the synthesis of simple precursor molecules to the origin of life".[116]

    Cryovolcanism and mountains

    Near-infrared image of Tortola Facula, thought to be a possible cryovolcano

    Scientists have long speculated that conditions on Titan resemble those of early Earth, though at a much lower temperature. The detection of argon-40 in the atmosphere in 2004 indicated that volcanoes had spawned plumes of "lava" composed of water and ammonia.[117] Global maps of the lake distribution on Titan's surface revealed that there is not enough surface methane to account for its continued presence in its atmosphere, and thus that a significant portion must be added through volcanic processes.[118]

    Still, there is a paucity of surface features that can be unambiguously interpreted as cryovolcanoes.[119] One of the first of such features revealed by Cassini radar observations in 2004, called Ganesa Macula, resembles the geographic features called "pancake domes" found on Venus, and was thus initially thought to be cryovolcanic in origin, until Kirk et al. refuted this hypothesis at the American Geophysical Union annual meeting in December 2008. The feature was found to be not a dome at all, but appeared to result from accidental combination of light and dark patches.[120][121] In 2004 Cassini also detected an unusually bright feature (called Tortola Facula), which was interpreted as a cryovolcanic dome.[122] No similar features have been identified as of 2010.[123] In December 2008, astronomers announced the discovery of two transient but unusually long-lived "bright spots" in Titan's atmosphere, which appear too persistent to be explained by mere weather patterns, suggesting they were the result of extended cryovolcanic episodes.[33]

    A mountain range measuring 150 kilometers (93 mi) long, 30 kilometers (19 mi) wide and 1.5 kilometers (0.93 mi) high was also discovered by Cassini in 2006. This range lies in the southern hemisphere and is thought to be composed of icy material and covered in methane snow. The movement of tectonic plates, perhaps influenced by a nearby impact basin, could have opened a gap through which the mountain's material upwelled.[124] Prior to Cassini, scientists assumed that most of the topography on Titan would be impact structures, yet these findings reveal that similar to Earth, the mountains were formed through geological processes.[125]

    In 2008 Jeffrey Moore (planetary geologist of Ames Research Center) proposed an alternate view of Titan's geology. Noting that no volcanic features had been unambiguously identified on Titan so far, he asserted that Titan is a geologically dead world, whose surface is shaped only by impact cratering, fluvial and eolian erosion, mass wasting and other exogenic processes. According to this hypothesis, methane is not emitted by volcanoes but slowly diffuses out of Titan's cold and stiff interior. Ganesa Macula may be an eroded impact crater with a dark dune in the center. The mountainous ridges observed in some regions can be explained as heavily degraded scarps of large multi-ring impact structures or as a result of the global contraction due to the slow cooling of the interior. Even in this case, Titan may still have an internal ocean made of the eutectic water–ammonia mixture with a temperature of 176 K (−97 °C), which is low enough to be explained by the decay of radioactive elements in the core. The bright Xanadu terrain may be a degraded heavily cratered terrain similar to that observed on the surface of Callisto. Indeed, were it not for its lack of an atmosphere, Callisto could serve as a model for Titan's geology in this scenario. Jeffrey Moore even called Titan Callisto with weather.[119][126]

    In March 2009, structures resembling lava flows were announced in a region of Titan called Hotei Arcus, which appears to fluctuate in brightness over several months. Though many phenomena were suggested to explain this fluctuation, the lava flows were found to rise 200 meters (660 ft) above Titan's surface, consistent with it having been erupted from beneath the surface.[127]

    In December 2010, the Cassini mission team announced the most compelling possible cryovolcano yet found. Named Sotra Patera, it is one in a chain of at least three mountains, each between 1000 and 1500 m in height, several of which are topped by large craters. The ground around their bases appears to be overlaid by frozen lava flows.[128]

    Crater-like landforms possibly formed via explosive, maar-like or caldera-forming cryovolcanic eruptions have been identified in Titan's polar regions.[129] These formations are sometimes nested or overlapping and have features suggestive of explosions and collapses, such as elevated rims, halos, and internal hills or mountains.[129] The polar location of these features and their colocalization with Titan's lakes and seas suggests volatiles such as methane may help power them. Some of these features appear quite fresh, suggesting that such volcanic activity continues to the present.[129]

    Most of Titan's highest peaks occur near its equator in so-called "ridge belts". They are believed to be analogous to Earth's fold mountains such as the Rockies or the Himalayas, formed by the collision and buckling of tectonic plates, or to subduction zones like the Andes, where upwelling lava (or cryolava) from a melting descending plate rises to the surface. One possible mechanism for their formation is tidal forces from Saturn. Because Titan's icy mantle is less viscous than Earth's magma mantle, and because its icy bedrock is softer than Earth's granite bedrock, mountains are unlikely to reach heights as great as those on Earth. In 2016, the Cassini team announced what they believe to be the tallest mountain on Titan. Located in the Mithrim Montes range, it is 3,337 m tall.[130]

    False-color VIMS image of the possible cryovolcano Sotra Patera, combined with a 3D map based on radar data, showing 1000-meter-high peaks and a 1500-meter-deep crater.

    If volcanism on Titan really exists, the hypothesis is that it is driven by energy released from the decay of radioactive elements within the mantle, as it is on Earth.[33] Magma on Earth is made of liquid rock, which is less dense than the solid rocky crust through which it erupts. Because ice is less dense than water, Titan's watery magma would be denser than its solid icy crust. This means that cryovolcanism on Titan would require a large amount of additional energy to operate, possibly via tidal flexing from nearby Saturn.[33] The low-pressure ice, overlaying a liquid layer of ammonium sulfate, ascends buoyantly, and the unstable system can produce dramatic plume events. Titan is resurfaced through the process by grain-sized ice and ammonium sulfate ash, which helps produce a wind-shaped landscape and sand dune features.[131] Titan may have been much more geologically active in the past; models of Titan's internal evolution suggest that Titan's crust was only 10 kilometers thick until about 500 million years ago, allowing vigorous cryovolcanism with low viscosity water magmas to erase all surface features formed before that time. Titan's modern geology would have formed only after the crust thickened to 50 kilometers and thus impeded constant cryovolcanic resurfacing, with any cryovolcanism occurring since that time producing much more viscous water magma with larger fractions of ammonia and methanol; this would also suggest that Titan's methane is no longer being actively added to its atmosphere and could be depleted entirely within a few tens of millions of years.[132]

    Many of the more prominent mountains and hills have been given official names by the International Astronomical Union. According to JPL, "By convention, mountains on Titan are named for mountains from Middle-earth, the fictional setting in fantasy novels by J. R. R. Tolkien." Colles (collections of hills) are named for characters from the same Tolkien works.[133]

    Dark equatorial terrain

    Sand dunes in the Namib Desert on Earth (top), compared with dunes in Belet on Titan

    In the first images of Titan's surface taken by Earth-based telescopes in the early 2000s, large regions of dark terrain were revealed straddling Titan's equator.[134] Prior to the arrival of Cassini, these regions were thought to be seas of liquid hydrocarbons.[135] Radar images captured by the Cassini spacecraft have instead revealed some of these regions to be extensive plains covered in longitudinal dunes, up to 330 ft (100 m) high[136] about a kilometer wide, and tens to hundreds of kilometers long.[137] Dunes of this type are always aligned with average wind direction. In the case of Titan, steady zonal (eastward) winds combine with variable tidal winds (approximately 0.5 meters per second).[138] The tidal winds are the result of tidal forces from Saturn on Titan's atmosphere, which are 400 times stronger than the tidal forces of the Moon on Earth and tend to drive wind toward the equator. This wind pattern, it was hypothesized, causes granular material on the surface to gradually build up in long parallel dunes aligned west-to-east. The dunes break up around mountains, where the wind direction shifts.[139]

    The longitudinal (or linear) dunes were initially presumed to be formed by moderately variable winds that either follow one mean direction or alternate between two different directions. Subsequent observations indicate that the dunes point to the east although climate simulations indicate Titan's surface winds blow toward the west. At less than 1 meter per second, they are not powerful enough to lift and transport surface material. Recent computer simulations indicate that the dunes may be the result of rare storm winds that happen only every fifteen years when Titan is in equinox. These storms produce strong downdrafts, flowing eastward at up to 10 meters per second when they reach the surface.[140]

    The "sand" on Titan is likely not made up of small grains of silicates like the sand on Earth,[141] but rather might have formed when liquid methane rained and eroded the water-ice bedrock, possibly in the form of flash floods. Alternatively, the sand could also have come from organic solids called tholins, produced by photochemical reactions in Titan's atmosphere.[136][138][142] Studies of dunes' composition in May 2008 revealed that they possessed less water than the rest of Titan, and are thus most likely derived from organic soot like hydrocarbon polymers clumping together after raining onto the surface.[143] Calculations indicate the sand on Titan has a density of one-third that of terrestrial sand.[144] The low density combined with the dryness of Titan's atmosphere might cause the grains to clump together because of static electricity buildup. The "stickiness" might make it difficult for the generally mild breeze close to Titan's surface to move the dunes although more powerful winds from seasonal storms could still blow them eastward.[145]

    Around equinox, strong downburst winds can lift micron-sized solid organic particles up from the dunes to create Titanian dust storms, observed as intense and short-lived brightenings in the infrared.[146]

    Titan - three dust storms detected in 2009–2010.[147]

    Observation and exploration

    Voyager 1 view of haze on Titan's limb (1980)

    Titan is never visible to the naked eye, but can be observed through small telescopes or strong binoculars. Amateur observation is difficult because of the proximity of Titan to Saturn's brilliant globe and ring system; an occulting bar, covering part of the eyepiece and used to block the bright planet, greatly improves viewing.[148] Titan has a maximum apparent magnitude of +8.2,[12] and mean opposition magnitude 8.4.[149] This compares to +4.6 for the similarly sized Ganymede, in the Jovian system.[149]

    Observations of Titan prior to the space age were limited. In 1907 Spanish astronomer Josep Comas i Solà observed limb darkening of Titan, the first evidence that the body has an atmosphere. In 1944 Gerard P. Kuiper used a spectroscopic technique to detect an atmosphere of methane.[150]

    Fly-by missions: Pioneer and Voyager

    The first probe to visit the Saturnian system was Pioneer 11 in 1979, which revealed that Titan was probably too cold to support life.[151] It took images of Titan, including Titan and Saturn together in mid to late 1979.[152] The quality was soon surpassed by the two Voyagers.[153]

    Titan was examined by both Voyager 1 and 2 in 1980 and 1981, respectively. Voyager 1's trajectory was designed to provide an optimized Titan flyby, during which the spacecraft was able to determine the density, composition, and temperature of the atmosphere, and obtain a precise measurement of Titan's mass.[154] Atmospheric haze prevented direct imaging of the surface, though in 2004 intensive digital processing of images taken through Voyager 1's orange filter did reveal hints of the light and dark features now known as Xanadu and Shangri-la,[155] which had been observed in the infrared by the Hubble Space Telescope. Voyager 2, which would have been diverted to perform the Titan flyby if Voyager 1 had been unable to, did not pass near Titan and continued on to Uranus and Neptune.[154]:94

    Cassini's Titan flyby radio signal studies (artist's concept)

    Cassini–Huygens

    Cassini image of Titan in front of the rings of Saturn
    Cassini image of Titan, behind Epimetheus and the rings

    Even with the data provided by the Voyagers, Titan remained a body of mystery—a large satellite shrouded in an atmosphere that makes detailed observation difficult.

    The Cassini–Huygens spacecraft reached Saturn on July 1, 2004, and began the process of mapping Titan's surface by radar. A joint project of the European Space Agency (ESA) and NASA, Cassini–Huygens proved a very successful mission. The Cassini probe flew by Titan on October 26, 2004, and took the highest-resolution images ever of Titan's surface, at only 1,200 kilometers (750 mi), discerning patches of light and dark that would be invisible to the human eye.

    On July 22, 2006, Cassini made its first targeted, close fly-by at 950 kilometers (590 mi) from Titan; the closest flyby was at 880 kilometers (550 mi) on June 21, 2010.[156] Liquid has been found in abundance on the surface in the north polar region, in the form of many lakes and seas discovered by Cassini.[89]

    Huygens landing

    Huygens in situ image from Titan's surface—the only image from the surface of a body permanently farther away than Mars
    Same image with contrast enhanced

    Huygens was an atmospheric probe that touched down on Titan on January 14, 2005,[157] discovering that many of its surface features seem to have been formed by fluids at some point in the past.[158] Titan is the most distant body from Earth to have a space probe land on its surface.[159]

    The Huygens probe landed just off the easternmost tip of a bright region now called Adiri. The probe photographed pale hills with dark "rivers" running down to a dark plain. Current understanding is that the hills (also referred to as highlands) are composed mainly of water ice. Dark organic compounds, created in the upper atmosphere by the ultraviolet radiation of the Sun, may rain from Titan's atmosphere. They are washed down the hills with the methane rain and are deposited on the plains over geological time scales.[160]

    After landing, Huygens photographed a dark plain covered in small rocks and pebbles, which are composed of water ice.[160] The two rocks just below the middle of the image on the right are smaller than they may appear: the left-hand one is 15 centimeters across, and the one in the center is 4 centimeters across, at a distance of about 85 centimeters from Huygens. There is evidence of erosion at the base of the rocks, indicating possible fluvial activity. The ground surface is darker than originally expected, consisting of a mixture of water and hydrocarbon ice.[161]

    In March 2007, NASA, ESA, and COSPAR decided to name the Huygens landing site the Hubert Curien Memorial Station in memory of the former president of the ESA.[162]

    Dragonfly

    The Dragonfly mission, developed and operated by the Johns Hopkins Applied Physics Laboratory, will launch in June 2027.[163][164] It consists of a large drone powered by an RTG to fly in the atmosphere of Titan as New Frontiers 4.[165][166] Its instruments will study how far prebiotic chemistry may have progressed.[167] The mission is planned to arrive at Titan in 2034.[166]

    Proposed or conceptual missions

    The balloon proposed for the Titan Saturn System Mission (artistic rendition)

    There have been several conceptual missions proposed in recent years for returning a robotic space probe to Titan. Initial conceptual work has been completed for such missions by NASA (and JPL), and ESA. At present, none of these proposals have become funded missions.

    The Titan Saturn System Mission (TSSM) was a joint NASA/ESA proposal for exploration of Saturn's moons.[168] It envisions a hot-air balloon floating in Titan's atmosphere for six months. It was competing against the Europa Jupiter System Mission (EJSM) proposal for funding. In February 2009 it was announced that ESA/NASA had given the EJSM mission priority ahead of the TSSM.[169]

    The proposed Titan Mare Explorer (TiME) was a low-cost lander that would splash down in a lake in Titan's northern hemisphere and float on the surface of the lake for three to six months.[170][171][172] It was selected for a Phase-A design study in 2011 as a candidate mission for the 12th NASA Discovery Program opportunity,[173] but was not selected for flight.[174]

    Another mission to Titan proposed in early 2012 by Jason Barnes, a scientist at the University of Idaho, is the Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR): an unmanned plane (or drone) that would fly through Titan's atmosphere and take high-definition images of the surface of Titan. NASA did not approve the requested $715 million, and the future of the project is uncertain.[175][176]

    A conceptual design for another lake lander was proposed in late 2012 by the Spanish-based private engineering firm SENER and the Centro de Astrobiología in Madrid. The concept probe is called Titan Lake In-situ Sampling Propelled Explorer (TALISE).[177][178] The major difference compared to the TiME probe would be that TALISE is envisioned with its own propulsion system and would therefore not be limited to simply drifting on the lake when it splashes down.[177]

    A Discovery Program contestant for its mission #13 is Journey to Enceladus and Titan (JET), an astrobiology Saturn orbiter that would assess the habitability potential of Enceladus and Titan.[179][180][181]

    In 2015, the NASA Innovative Advanced Concepts program (NIAC) awarded a Phase II grant[182] to a design study of a Titan Submarine to explore the seas of Titan.[183][184][185][186][187]

    Prebiotic conditions and life

    Titan is thought to be a prebiotic environment rich in complex organic compounds,[56][188] but its surface is in a deep freeze at −179 °C (−290.2 °F; 94.1 K) so life as we know it cannot exist on the moon's frigid surface.[189] However, Titan seems to contain a global ocean beneath its ice shell, and within this ocean, conditions are potentially suitable for microbial life.[190][191][192]

    The Cassini–Huygens mission was not equipped to provide evidence for biosignatures or complex organic compounds; it showed an environment on Titan that is similar, in some ways, to ones hypothesized for the primordial Earth.[193] Scientists surmise that the atmosphere of early Earth was similar in composition to the current atmosphere on Titan, with the important exception of a lack of water vapor on Titan.[194][188]

    Formation of complex molecules

    The Miller–Urey experiment and several following experiments have shown that with an atmosphere similar to that of Titan and the addition of UV radiation, complex molecules and polymer substances like tholins can be generated. The reaction starts with dissociation of nitrogen and methane, forming hydrogen cyanide and acetylene. Further reactions have been studied extensively.[195]

    It has been reported that when energy was applied to a combination of gases like those in Titan's atmosphere, five nucleotide bases, the building blocks of DNA and RNA, were among the many compounds produced. In addition, amino acids, the building blocks of protein were found. It was the first time nucleotide bases and amino acids had been found in such an experiment without liquid water being present.[196]

    On April 3, 2013, NASA reported that complex organic chemicals could arise on Titan based on studies simulating the atmosphere of Titan.[56]

    On June 6, 2013, scientists at the IAA-CSIC reported the detection of polycyclic aromatic hydrocarbons (PAH) in the upper atmosphere of Titan.[57][58]

    On July 26, 2017, Cassini scientists positively identified the presence of carbon chain anions in Titan's upper atmosphere which appeared to be involved in the production of large complex organics.[197] These highly reactive molecules were previously known to contribute to building complex organics in the Interstellar Medium, therefore highlighting a possibly universal stepping stone to producing complex organic material.[198]

    On July 28, 2017, scientists reported that acrylonitrile, or vinyl cyanide, (C2H3CN), possibly essential for life by being related to cell membrane and vesicle structure formation, had been found on Titan.[199][200][201]

    In October 2018, researchers reported low-temperature chemical pathways from simple organic compounds to complex polycyclic aromatic hydrocarbon (PAH) chemicals. Such chemical pathways may help explain the presence of PAHs in the low-temperature atmosphere of Titan, and may be significant pathways, in terms of the PAH world hypothesis, in producing precursors to biochemicals related to life as we know it.[202][203]

    Possible subsurface habitats

    Laboratory simulations have led to the suggestion that enough organic material exists on Titan to start a chemical evolution analogous to what is thought to have started life on Earth. The analogy assumes the presence of liquid water for longer periods than is currently observable; several hypotheses postulate that liquid water from an impact could be preserved under a frozen isolation layer.[204] It has also been hypothesized that liquid-ammonia oceans could exist deep below the surface.[190][205] Another model suggests an ammonia–water solution as much as 200 kilometers (120 mi) deep beneath a water-ice crust with conditions that, although extreme by terrestrial standards, are such that life could survive.[191] Heat transfer between the interior and upper layers would be critical in sustaining any subsurface oceanic life.[190] Detection of microbial life on Titan would depend on its biogenic effects, with the atmospheric methane and nitrogen examined.[191]

    Methane and life at the surface

    It has been speculated that life could exist in the lakes of liquid methane on Titan, just as organisms on Earth live in water.[206] Such organisms would inhale H2 in place of O2, metabolize it with acetylene instead of glucose, and exhale methane instead of carbon dioxide.[192][206] However, such hypothetical organisms would be required to metabolize at a deep freeze temperature of −179.2 °C (−290.6 °F; 94.0 K).[189]

    All life forms on Earth (including methanogens) use liquid water as a solvent; it is speculated that life on Titan might instead use a liquid hydrocarbon, such as methane or ethane,[207] although water is a stronger solvent than methane.[208] Water is also more chemically reactive, and can break down large organic molecules through hydrolysis.[207] A life form whose solvent was a hydrocarbon would not face the risk of its biomolecules being destroyed in this way.[207]

    In 2005, astrobiologist Chris McKay argued that if methanogenic life did exist on the surface of Titan, it would likely have a measurable effect on the mixing ratio in the Titan troposphere: levels of hydrogen and acetylene would be measurably lower than otherwise expected. Assuming metabolic rates similar to those of methanogenic organisms on Earth, the concentration of molecular hydrogen would drop by a factor of 1000 on the Titanian surface solely due to a hypothetical biological sink. McKay noted that, if life is indeed present, the low temperatures on Titan would result in very slow metabolic processes, which could conceivably be hastened by the use of catalysts similar to enzymes. He also noted that the low solubility of organic compounds in methane presents a more significant challenge to any possible form of life. Forms of active transport, and organisms with large surface-to-volume ratios could theoretically lessen the disadvantages posed by this fact.[206]

    In 2010, Darrell Strobel, from Johns Hopkins University, identified a greater abundance of molecular hydrogen in the upper atmospheric layers of Titan compared to the lower layers, arguing for a downward flow at a rate of roughly 1028 molecules per second and disappearance of hydrogen near Titan's surface; as Strobel noted, his findings were in line with the effects McKay had predicted if methanogenic life-forms were present.[206][208][209] The same year, another study showed low levels of acetylene on Titan's surface, which were interpreted by McKay as consistent with the hypothesis of organisms consuming hydrocarbons.[208] Although restating the biological hypothesis, he cautioned that other explanations for the hydrogen and acetylene findings are more likely: the possibilities of yet unidentified physical or chemical processes (e.g. a surface catalyst accepting hydrocarbons or hydrogen), or flaws in the current models of material flow.[192] Composition data and transport models need to be substantiated, etc. Even so, despite saying that a non-biological catalytic explanation would be less startling than a biological one, McKay noted that the discovery of a catalyst effective at 95 K (−180 °C) would still be significant.[192]

    As NASA notes in its news article on the June 2010 findings: "To date, methane-based life forms are only hypothetical. Scientists have not yet detected this form of life anywhere."[208] As the NASA statement also says: "some scientists believe these chemical signatures bolster the argument for a primitive, exotic form of life or precursor to life on Titan's surface."[208]

    In February 2015, a hypothetical cell membrane capable of functioning in liquid methane at cryogenic temperatures (deep freeze) conditions was modeled. Composed of small molecules containing carbon, hydrogen, and nitrogen, it would have the same stability and flexibility as cell membranes on Earth, which are composed of phospholipids, compounds of carbon, hydrogen, oxygen, and phosphorus. This hypothetical cell membrane was termed an "azotosome", a combination of "azote", French for nitrogen, and "liposome".[210][211]

    Obstacles

    Despite these biological possibilities, there are formidable obstacles to life on Titan, and any analogy to Earth is inexact. At a vast distance from the Sun, Titan is frigid, and its atmosphere lacks CO2. At Titan's surface, water exists only in solid form. Because of these difficulties, scientists such as Jonathan Lunine have viewed Titan less as a likely habitat for life than as an experiment for examining hypotheses on the conditions that prevailed prior to the appearance of life on Earth.[212] Although life itself may not exist, the prebiotic conditions on Titan and the associated organic chemistry remain of great interest in understanding the early history of the terrestrial biosphere.[193] Using Titan as a prebiotic experiment involves not only observation through spacecraft, but laboratory experiments, and chemical and photochemical modeling on Earth.[195]

    Panspermia hypothesis

    It is hypothesized that large asteroid and cometary impacts on Earth's surface may have caused fragments of microbe-laden rock to escape Earth's gravity, suggesting the possibility of panspermia. Calculations indicate that these would encounter many of the bodies in the Solar System, including Titan.[213][214] On the other hand, Jonathan Lunine has argued that any living things in Titan's cryogenic hydrocarbon lakes would need to be so different chemically from Earth life that it would not be possible for one to be the ancestor of the other.[215]

    Future conditions

    Conditions on Titan could become far more habitable in the far future. Five billion years from now, as the Sun becomes a red giant, its surface temperature could rise enough for Titan to support liquid water on its surface, making it habitable.[216] As the Sun's ultraviolet output decreases, the haze in Titan's upper atmosphere will be depleted, lessening the anti-greenhouse effect on the surface and enabling the greenhouse created by atmospheric methane to play a far greater role. These conditions together could create a habitable environment, and could persist for several hundred million years. This is proposed to have been sufficient time for simple life to spawn on Earth, though the presence of ammonia on Titan would cause chemical reactions to proceed more slowly.[217]

    See also

    • Colonization of Titan
    • Lakes of Titan
    • Life on Titan
    • List of natural satellites
    • Saturn's moons in fiction
    • The sky of Titan
    • Titan in fiction
    • Titan Winged Aerobot
    • Vid Flumina a river of methane and ethane on Titan

    References

    1. "Titan". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
    2. "Cassini Equinox Mission: Huygens Landed with a Splat". JPL. January 18, 2005. Archived from the original on June 20, 2010. Retrieved May 26, 2010.
    3. Luz; et al. (2003). "Latitudinal transport by barotropic waves in Titan's stratosphere". Icarus. 166 (2): 343–358. doi:10.1016/j.icarus.2003.08.014.
    4. "Titanian". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
    5. "Titanian" is the written adjectival form of both Titan and Uranus's moon Titania. However, Uranus's moon has a Shakespearean pronunciation with a short "i" vowel and the "a" of spa: /tɪˈtɑːniən/, while either spelling for Titan is pronounced with those two vowels long: /tˈtniən/.
    6. Unless otherwise specified: "JPL HORIZONS solar system data and ephemeris computation service". Solar System Dynamics. NASA, Jet Propulsion Laboratory. Archived from the original on October 7, 2012. Retrieved August 19, 2007.
    7. Zebker, Howard A.; Stiles, Bryan; Hensley, Scott; Lorenz, Ralph; Kirk, Randolph L.; Lunine, Jonathan I. (May 15, 2009). "Size and Shape of Saturn's Moon Titan" (PDF). Science. 324 (5929): 921–923. Bibcode:2009Sci...324..921Z. doi:10.1126/science.1168905. PMID 19342551. S2CID 23911201. Archived from the original (PDF) on February 12, 2020.
    8. Jacobson, R. A.; Antreasian, P. G.; Bordi, J. J.; Criddle, K. E.; Ionasescu, R.; Jones, J. B.; Mackenzie, R. A.; Meek, M. C.; Parcher, D.; Pelletier, F. J.; Owen, Jr., W. M.; Roth, D. C.; Roundhill, I. M.; Stauch, J. R. (December 2006). "The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data". The Astronomical Journal. 132 (6): 2520–2526. Bibcode:2006AJ....132.2520J. doi:10.1086/508812.
    9. Iess, L.; Rappaport, N. J.; Jacobson, R. A.; Racioppa, P.; Stevenson, D. J.; Tortora, P.; Armstrong, J. W.; Asmar, S. W. (March 12, 2010). "Gravity Field, Shape, and Moment of Inertia of Titan". Science. 327 (5971): 1367–1369. Bibcode:2010Sci...327.1367I. doi:10.1126/science.1182583. PMID 20223984. S2CID 44496742. Archived from the original on February 12, 2021. Retrieved December 7, 2019.
    10. Williams, D. R. (February 22, 2011). "Saturnian Satellite Fact Sheet". NASA. Archived from the original on April 30, 2010. Retrieved April 22, 2015.
    11. Mitri, G.; Showman, Adam P.; Lunine, Jonathan I.; Lorenz, Ralph D. (2007). "Hydrocarbon Lakes on Titan" (PDF). Icarus. 186 (2): 385–394. Bibcode:2007Icar..186..385M. doi:10.1016/j.icarus.2006.09.004. Archived (PDF) from the original on February 27, 2008.
    12. "Classic Satellites of the Solar System". Observatorio ARVAL. Archived from the original on July 9, 2011. Retrieved June 28, 2010.
    13. Niemann, H. B.; et al. (2005). "The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe" (PDF). Nature. 438 (7069): 779–784. Bibcode:2005Natur.438..779N. doi:10.1038/nature04122. hdl:2027.42/62703. PMID 16319830. S2CID 4344046. Archived from the original on April 14, 2020. Retrieved April 17, 2018.
    14. Coustenis & Taylor (2008), pp. 154–155.
    15. Overbye, Dennis (December 3, 2019). "Go Ahead, Take a Spin on Titan - Saturn's biggest moon has gasoline for rain, soot for snow, and a subsurface ocean of ammonia. Now there's a map to help guide the search for possible life there". The New York Times. Archived from the original on December 5, 2019. Retrieved December 5, 2019.
    16. Robert Brown; Jean Pierre Lebreton; Hunter Waite, eds. (2009). Titan from Cassini-Huygens. Springer Science & Business Media. p. 69. ISBN 9781402092152.
    17. "Lifting Titan's Veil" (PDF). Cambridge. p. 4. Archived from the original (PDF) on February 22, 2005.
    18. "Titan". Astronomy Picture of the Day. NASA. Archived from the original on March 27, 2005.
    19. "Discoverer of Titan: Christiaan Huygens". European Space Agency. September 4, 2008. Archived from the original on August 9, 2011. Retrieved April 18, 2009.
    20. Nemiroff, R.; Bonnell, J., eds. (March 25, 2005). "Huygens Discovers Luna Saturni". Astronomy Picture of the Day. NASA. Retrieved August 18, 2007.
    21. Huygens, Christiaan; Société hollandaise des sciences (1888). Oeuvres complètes de Christiaan Huygens (in Latin). Vol. 1. The Hague, Netherlands: Martinus Nijhoff. pp. 387–388. Archived from the original on January 31, 2019. Retrieved January 31, 2019.
    22. Cassini, G. D. (1673). "A Discovery of two New Planets about Saturn, made in the Royal Parisian Observatory by Signor Cassini, Fellow of both the Royal Societys, of England and France; English't out of French". Philosophical Transactions. 8 (1673): 5178–5185. Bibcode:1673RSPT....8.5178C. doi:10.1098/rstl.1673.0003.
    23. "Planet and Satellite Names and Discoverers". USGS. Archived from the original on November 28, 2017. Retrieved March 6, 2021.
    24. Lassell (November 12, 1847). "Observations of Mimas, the closest and most interior satellite of Saturn". Monthly Notices of the Royal Astronomical Society. 8 (3): 42–43. Bibcode:1848MNRAS...8...42L. doi:10.1093/mnras/8.3.42. Archived from the original on September 11, 2006. Retrieved March 29, 2005.
    25. Herschel, Sir John F. W. (1847). Results of astronomical observations made during the years 1834, 5, 6, 7, 8, at the Cape of Good Hope: being the completion of a telescopic survey of the whole surface of the visible heavens, commenced in 1825. London: Smith, Elder & Co. p. 415.
    26. "Overview | Saturn Moons". solarsystem.nasa.gov. NASA. Archived from the original on November 29, 2021. Retrieved March 1, 2021.
    27. "EVS-Islands: Titan's Unnamed Methane Sea". Archived from the original on August 9, 2011. Retrieved October 22, 2009.
    28. Bevilacqua, R.; Menchi, O.; Milani, A.; Nobili, A. M.; Farinella, P. (1980). "Resonances and close approaches. I. The Titan-Hyperion case". Earth, Moon, and Planets. 22 (2): 141–152. Bibcode:1980M&P....22..141B. doi:10.1007/BF00898423. S2CID 119442634.
    29. Arnett, Bill (2005). "Titan". Nine planets. University of Arizona, Tucson. Archived from the original on November 21, 2005. Retrieved April 10, 2005.
    30. Lunine, Jonathan I. (March 21, 2005). "Comparing the Triad of Great Moons". Astrobiology Magazine. Archived from the original on July 7, 2019. Retrieved July 20, 2006.
    31. Mitri, G.; Pappalardo, R. T.; Stevenson, D. J. (December 1, 2009). "Is Titan Partially Differentiated?". AGU Fall Meeting Abstracts. 43: P43F–07. Bibcode:2009AGUFM.P43F..07M.
    32. Tobie, G.; Grasset, Olivier; Lunine, Jonathan I.; Mocquet, Antoine; Sotin, Christophe (2005). "Titan's internal structure inferred from a coupled thermal-orbital model". Icarus. 175 (2): 496–502. Bibcode:2005Icar..175..496T. doi:10.1016/j.icarus.2004.12.007.
    33. Longstaff, Alan (February 2009). "Is Titan (cryo)volcanically active?". Royal Observatory, Greenwich (Astronomy Now): 19.
    34. "Titan's Mysterious Radio Wave". ESA Cassini-Huygens web site. June 1, 2007. Archived from the original on June 5, 2011. Retrieved March 25, 2010.
    35. Shiga, David (March 20, 2008). "Titan's changing spin hints at hidden ocean". New Scientist. Archived from the original on October 21, 2014.
    36. Iess, L.; Jacobson, R. A.; Ducci, M.; Stevenson, D. J.; Lunine, Jonathan I.; Armstrong, J. W.; Asmar, S. W.; Racioppa, P.; Rappaport, N. J.; Tortora, P. (2012). "The Tides of Titan". Science. 337 (6093): 457–9. Bibcode:2012Sci...337..457I. doi:10.1126/science.1219631. PMID 22745254. S2CID 10966007.
    37. Zebker, H. A.; Stiles, B.; Hensley, S.; Lorenz, R.; Kirk, R. L.; Lunine, Jonathan I. (2009). "Size and Shape of Saturn's Moon Titan" (PDF). Science. 324 (5929): 921–3. Bibcode:2009Sci...324..921Z. doi:10.1126/science.1168905. PMID 19342551. S2CID 23911201. Archived from the original (PDF) on February 12, 2020.
    38. Hemingway, D.; Nimmo, F.; Zebker, H.; Iess, L. (2013). "A rigid and weathered ice shell on Titan". Nature. 500 (7464): 550–2. Bibcode:2013Natur.500..550H. doi:10.1038/nature12400. PMID 23985871. S2CID 4428328.
    39. "Cassini Data: Saturn Moon May Have Rigid Ice Shell". JPL. Archived from the original on October 20, 2014.
    40. "Giant impact scenario may explain the unusual moons of Saturn". Space Daily. 2012. Archived from the original on March 28, 2016. Retrieved October 19, 2012.
    41. Dyches, Preston; Clavin, Whitney (June 23, 2014). "Titan's Building Blocks Might Pre-date Saturn" (Press release). Jet Propulsion Laboratory. Archived from the original on June 27, 2014. Retrieved June 28, 2014.
    42. "News Features: The Story of Saturn". Cassini–Huygens Mission to Saturn & Titan. NASA & JPL. Archived from the original on December 2, 2005. Retrieved January 8, 2007.
    43. "Wind or Rain or Cold of Titan's Night?". Astrobiology Magazine. March 11, 2005. Archived from the original on July 17, 2007. Retrieved August 24, 2007.
    44. Coustenis & Taylor (2008), p. 130.
    45. Zubrin, Robert (1999). Entering Space: Creating a Spacefaring Civilization. Section: Titan: Tarcher/Putnam. pp. 163–166. ISBN 978-1-58542-036-0.
    46. Turtle, Elizabeth P. (2007). "Exploring the Surface of Titan with Cassini–Huygens". Smithsonian. Archived from the original on July 20, 2013. Retrieved April 18, 2009.
    47. Schröder, S. E.; Tomasko, M. G.; Keller, H. U. (August 2005). "The reflectance spectrum of Titan's surface as determined by Huygens". American Astronomical Society, DPS Meeting No. 37, #46.15; Bulletin of the American Astronomical Society. 37 (726): 726. Bibcode:2005DPS....37.4615S.
    48. de Selding, Petre (January 21, 2005). "Huygens Probe Sheds New Light on Titan". Space.com. Archived from the original on October 19, 2012. Retrieved March 28, 2005.
    49. Waite, J. H.; Cravens, T. E.; Coates, A. J.; Crary, F. J.; Magee, B.; Westlake, J. (2007). "The Process of Tholin Formation in Titan's Upper Atmosphere". Science. 316 (5826): 870–5. Bibcode:2007Sci...316..870W. doi:10.1126/science.1139727. PMID 17495166. S2CID 25984655.
    50. Courtland, Rachel (September 11, 2008). "Saturn magnetises its moon Titan". New Scientist. Archived from the original on May 31, 2015.
    51. Coustenis, A. (2005). "Formation and evolution of Titan's atmosphere". Space Science Reviews. 116 (1–2): 171–184. Bibcode:2005SSRv..116..171C. doi:10.1007/s11214-005-1954-2. S2CID 121298964.
    52. "NASA Titan – Surface". NASA. Archived from the original on February 17, 2013. Retrieved February 14, 2013.
    53. Atreyaa, Sushil K.; Adamsa, Elena Y.; Niemann, Hasso B.; Demick-Montelar, Jaime E. a; Owen, Tobias C.; Fulchignoni, Marcello; Ferri, Francesca; Wilson, Eric H. (2006). "Titan's methane cycle". Planetary and Space Science. 54 (12): 1177–1187. Bibcode:2006P&SS...54.1177A. doi:10.1016/j.pss.2006.05.028.
    54. Stofan, E. R.; Elachi, C.; Lunine, Jonathan I.; Lorenz, R. D.; Stiles, B.; Mitchell, K. L.; Ostro, S.; Soderblom, L.; et al. (2007). "The lakes of Titan". Nature. 445 (7123): 61–64. Bibcode:2007Natur.445...61S. doi:10.1038/nature05438. PMID 17203056. S2CID 4370622.
    55. Tobie, Gabriel; Lunine, Jonathan I.; Sotin, Christophe (2006). "Episodic outgassing as the origin of atmospheric methane on Titan". Nature. 440 (7080): 61–64. Bibcode:2006Natur.440...61T. doi:10.1038/nature04497. PMID 16511489. S2CID 4335141.
    56. Staff (April 3, 2013). "NASA team investigates complex chemistry at Titan". Phys.Org. Archived from the original on April 21, 2013. Retrieved April 11, 2013.
    57. López-Puertas, Manuel (June 6, 2013). "PAH's in Titan's Upper Atmosphere". CSIC. Archived from the original on December 3, 2013. Retrieved June 6, 2013.
    58. Cours, T.; Cordier, D.; Seignovert, B.; Maltagliati, L.; Biennier, L. (2020). "The 3.4μm absorption in Titan's stratosphere: Contribution of ethane, propane, butane and complex hydrogenated organics". Icarus. 339: 113571. arXiv:2001.02791. Bibcode:2020Icar..33913571C. doi:10.1016/j.icarus.2019.113571. S2CID 210116807.
    59. Brown, Dwayne; Neal-Jones, Nancy; Zubritsky, Elizabeth; Cook, Jia-Rui (September 30, 2013). "NASA's Cassini Spacecraft Finds Ingredient of Household Plastic in Space". NASA. Archived from the original on November 27, 2013. Retrieved December 2, 2013.
    60. Dyches, Preston; Zubritsky, Elizabeth (October 24, 2014). "NASA Finds Methane Ice Cloud in Titan's Stratosphere". NASA. Archived from the original on October 28, 2014. Retrieved October 31, 2014.
    61. Zubritsky, Elizabeth; Dyches, Preston (October 24, 2014). "NASA Identifies Ice Cloud Above Cruising Altitude on Titan". NASA. Archived from the original on October 31, 2014. Retrieved October 31, 2014.
    62. Cottini, V.; Nixon, C.A.; Jennings, D.E.; Anderson, C.M.; Gorius, N.; Bjoraker, G.L.; Coustenis, A.; Teanby, N.A.; et al. (2012). "Water vapor in Titan's stratosphere from Cassini CIRS far-infrared spectra". Icarus. 220 (2): 855–862. Bibcode:2012Icar..220..855C. doi:10.1016/j.icarus.2012.06.014. hdl:2060/20120013575. ISSN 0019-1035.
    63. "Titan: A World Much Like Earth". Space.com. August 6, 2009. Archived from the original on October 12, 2012. Retrieved April 2, 2012.
    64. Faint sunlight enough to drive weather, clouds on Saturn's moon Titan Archived April 3, 2017, at the Wayback Machine Between the large distance from the Sun and the thick atmosphere, Titan's surface receives about 0.1 percent of the solar energy that Earth does.
    65. "Titan Has More Oil Than Earth". Space.com. February 13, 2008. Archived from the original on July 8, 2012. Retrieved February 13, 2008.
    66. McKay, C.P.; Pollack, J. B.; Courtin, R. (1991). "The greenhouse and antigreenhouse effects on Titan" (PDF). Science. 253 (5024): 1118–1121. Bibcode:1991Sci...253.1118M. doi:10.1126/science.11538492. PMID 11538492. S2CID 10384331. Archived from the original (PDF) on April 12, 2020.
    67. Dyches, Preston (August 12, 2014). "Cassini Tracks Clouds Developing Over a Titan Sea". NASA. Archived from the original on August 13, 2014. Retrieved August 13, 2014.
    68. Lakdawalla, Emily (January 21, 2004). "Titan: Arizona in an Icebox?". The Planetary Society. Archived from the original on February 12, 2010. Retrieved March 28, 2005.
    69. Emily L., Schaller; Brouwn, Michael E.; Roe, Henry G.; Bouchez, Antonin H. (2006). "A large cloud outburst at Titan's south pole" (PDF). Icarus. 182 (1): 224–229. Bibcode:2006Icar..182..224S. doi:10.1016/j.icarus.2005.12.021. Archived (PDF) from the original on September 26, 2007. Retrieved August 23, 2007.
    70. "The Way the Wind Blows on Titan". Jet Propulsion Laboratory. June 1, 2007. Archived from the original on April 27, 2009. Retrieved June 2, 2007.
    71. Shiga, David (2006). "Huge ethane cloud discovered on Titan". New Scientist. 313: 1620. Archived from the original on December 20, 2008. Retrieved August 7, 2007.
    72. Mahaffy, Paul R. (May 13, 2005). "Intensive Titan Exploration Begins". Science. 308 (5724): 969–970. Bibcode:2005Sci...308..969M. CiteSeerX 10.1.1.668.2877. doi:10.1126/science.1113205. PMID 15890870. S2CID 41758337.
    73. Chu, Jennifer (July 2012). "River networks on Titan point to a puzzling geologic history". MIT Research. Archived from the original on October 30, 2012. Retrieved July 24, 2012.
    74. "'Weird' Molecule Discovered in Titan's Atmosphere". nasa.gov. October 20, 2020. Archived from the original on July 15, 2021. Retrieved February 25, 2021.
    75. Tariq, Taimoor (March 12, 2012). "Titan, Saturn's largest moon is finally unravelled in detail". News Pakistan. Archived from the original on August 11, 2014. Retrieved March 12, 2012.
    76. Moore, J. M.; Pappalardo, R. T. (2011). "Titan: An exogenic world?". Icarus. 212 (2): 790–806. Bibcode:2011Icar..212..790M. doi:10.1016/j.icarus.2011.01.019. Archived from the original on July 26, 2021. Retrieved March 18, 2020.
    77. Battersby, Stephen (October 29, 2004). "Titan's complex and strange world revealed". New Scientist. Archived from the original on December 21, 2008. Retrieved August 31, 2007.
    78. "Spacecraft: Cassini Orbiter Instruments, RADAR". Cassini–Huygens Mission to Saturn & Titan. NASA, Jet Propulsion Laboratory. Archived from the original on August 7, 2011. Retrieved August 31, 2007.
    79. Lorenz, R. D.; et al. (2007). "Titan's Shape, Radius and Landscape from Cassini Radar Altimetry" (PDF). Lunar and Planetary Science Conference. 38 (1338): 1329. Bibcode:2007LPI....38.1329L. Archived (PDF) from the original on September 26, 2007. Retrieved August 27, 2007.
    80. "Cassini Reveals Titan's Xanadu Region To Be An Earth-Like Land". Science Daily. July 23, 2006. Archived from the original on June 29, 2011. Retrieved August 27, 2007.
    81. Barnes, Jason W.; Brown, Robert H.; Soderblom, Laurence; Buratti, Bonnie J.; Sotin, Christophe; Rodriguez, Sebastien; Le Mouèlic, Stephane; Baines, Kevin H.; et al. (2006). "Global-scale surface spectral variations on Titan seen from Cassini/VIMS" (PDF). Icarus. 186 (1): 242–258. Bibcode:2007Icar..186..242B. doi:10.1016/j.icarus.2006.08.021. Archived from the original (PDF) on July 25, 2011. Retrieved August 27, 2007.
    82. Klotz, Irene (April 28, 2016). "One of Titan". Discovery News. Space.com. Archived from the original on April 30, 2016. Retrieved May 1, 2016.
    83. Le Gall, A.; Malaska, M. J.; Lorenz, Ralph D.; Janssen, M. A.; Tokano, T.; Hayes, Alexander G.; Mastrogiuseppe, Marco; Lunine, Jonathan I.; Veyssière, G.; Encrenaz, P.; Karatekin, O. (February 25, 2016). "Composition, seasonal change, and bathymetry of Ligeia Mare, Titan, derived from its microwave thermal emission". Journal of Geophysical Research: Planets. 121 (2): 233–251. Bibcode:2016JGRE..121..233L. doi:10.1002/2015JE004920. Archived from the original on August 12, 2021. Retrieved August 12, 2021.
    84. Dermott, S. F.; Sagan, C. (1995). "Tidal effects of disconnected hydrocarbon seas on Titan". Nature. 374 (6519): 238–240. Bibcode:1995Natur.374..238D. doi:10.1038/374238a0. PMID 7885443. S2CID 4317897.
    85. Bortman, Henry (November 2, 2004). "Titan: Where's the Wet Stuff?". Astrobiology Magazine. Archived from the original on November 3, 2006. Retrieved August 28, 2007.
    86. Lakdawalla, Emily (June 28, 2005). "Dark Spot Near the South Pole: A Candidate Lake on Titan?". The Planetary Society. Archived from the original on June 5, 2011. Retrieved October 14, 2006.
    87. "NASA Confirms Liquid Lake On Saturn Moon". NASA. 2008. Archived from the original on June 29, 2011. Retrieved December 20, 2009.
    88. "NASA Cassini Radar Images Show Dramatic Shoreline on Titan" (Press release). Jet Propulsion Laboratory. September 16, 2005. Archived from the original on May 30, 2012. Retrieved October 14, 2006.
    89. "PIA08630: Lakes on Titan". Planetary Photojournal. NASA/JPL. Archived from the original on July 18, 2011. Retrieved October 14, 2006.
    90. Stofan, E. R.; Elachi, C.; Lunine, Jonathan I.; Lorenz, R. D.; Stiles, B.; Mitchell, K. L.; Ostro, S.; Soderblom, L.; et al. (2007). "The lakes of Titan". Nature. 445 (1): 61–64. Bibcode:2007Natur.445...61S. doi:10.1038/nature05438. PMID 17203056. S2CID 4370622.
    91. "Titan Has Liquid Lakes, Scientists Report in Nature". NASA/JPL. January 3, 2007. Archived from the original on May 23, 2013. Retrieved January 8, 2007.
    92. Hecht, Jeff (July 11, 2011). "Ethane lakes in a red haze: Titan's uncanny moonscape". New Scientist. Archived from the original on July 13, 2011. Retrieved July 25, 2011.
    93. Jet Propulsion Laboratory (2012). "Tropical Methane Lakes on Saturn's Moon Titan" (Press release). SpaceRef. Archived from the original on March 3, 2014. Retrieved March 2, 2014.
    94. Hadhazy, Adam (2008). "Scientists Confirm Liquid Lake, Beach on Saturn's Moon Titan". Scientific American. Archived from the original on September 5, 2012. Retrieved July 30, 2008.
    95. Grossman, Lisa (August 21, 2009). "Saturn moon's mirror-smooth lake 'good for skipping rocks'". New Scientist. Archived from the original on January 10, 2016. Retrieved November 25, 2009.
    96. Wye, L. C.; Zebker, H. A.; Lorenz, R. D. (2009). "Smoothness of Titan's Ontario Lacus: Constraints from Cassini RADAR specular reflection data". Geophysical Research Letters. 36 (16): L16201. Bibcode:2009GeoRL..3616201W. doi:10.1029/2009GL039588.
    97. Cook, J.-R. C. (December 17, 2009). "Glint of Sunlight Confirms Liquid in Northern Lake District of Titan". Cassini mission page. NASA. Archived from the original on June 5, 2011. Retrieved December 18, 2009.
    98. Lakdawalla, Emily (December 17, 2009). "Cassini VIMS sees the long-awaited glint off a Titan lake". The Planetary Society Blog. Planetary Society. Archived from the original on June 30, 2012. Retrieved December 17, 2009.
    99. Wall, Mike (December 17, 2010). "Saturn Moon's 'Lake Ontario': Shallow and Virtually Wave-free". Space.Com web site. Archived from the original on October 20, 2012. Retrieved December 19, 2010.
    100. Crockett, Christopher (November 17, 2014). "Cassini maps depths of Titan's seas". ScienceNews. Archived from the original on April 3, 2015. Retrieved November 18, 2014.
    101. Valerio Poggiali, Marco Mastrogiuseppe, Alexander G. Hayes, Roberto Seu, Samuel P. D. Birch, Ralph Lorenz, Cyril Grima, Jason D. Hofgartner, "Liquid-filled Canyons on Titan", August 9, 2016, Poggiali, V.; Mastrogiuseppe, M.; Hayes, A. G.; Seu, R.; Birch, S. P. D.; Lorenz, R.; Grima, C.; Hofgartner, J. D. (2016). "Liquid-filled canyons on Titan". Geophysical Research Letters. 43 (15): 7887–7894. Bibcode:2016GeoRL..43.7887P. doi:10.1002/2016GL069679. hdl:11573/932488.
    102. Perkins, Sid (June 28, 2012). "Tides turn on Titan". Nature. Archived from the original on October 7, 2012. Retrieved June 29, 2012.
    103. Puiu, Tibi (June 29, 2012). "Saturn's moon Titan most likely harbors a subsurface ocean of water". zmescience.com web site. Archived from the original on September 3, 2012. Retrieved June 29, 2012.
    104. Dyches, Preston; Brown, Dwayne (July 2, 2014). "Ocean on Saturn Moon Could be as Salty as the Dead Sea". NASA. Archived from the original on July 9, 2014. Retrieved July 2, 2014.
    105. Mitri, Giuseppe; Meriggiola, Rachele; Hayes, Alex; Lefevree, Axel; Tobie, Gabriel; Genovad, Antonio; Lunine, Jonathan I.; Zebker, Howard (2014). "Shape, topography, gravity anomalies and tidal deformation of Titan". Icarus. 236: 169–177. Bibcode:2014Icar..236..169M. doi:10.1016/j.icarus.2014.03.018.
    106. Dyches, Preston; Mousis, Olivier; Altobelli, Nicolas (September 3, 2014). "Icy Aquifers on Titan Transform Methane Rainfall". NASA. Archived from the original on September 5, 2014. Retrieved September 4, 2014.
    107. "Cassini Finds Flooded Canyons on Titan". NASA. 2016. Archived from the original on August 11, 2016. Retrieved August 12, 2016.
    108. Wood, C. A.; Lorenz, R.; Kirk, R.; Lopes, R.; Mitchell, K.; Stofan, E.; The Cassini RADAR Team (September 6, 2009). "Impact craters on Titan". Icarus. 206 (1): 334–344. Bibcode:2010Icar..206..334L. doi:10.1016/j.icarus.2009.08.021.
    109. "PIA07365: Circus Maximus". Planetary Photojournal. NASA. Archived from the original on July 18, 2011. Retrieved May 4, 2006.
    110. "PIA07368: Impact Crater with Ejecta Blanket". Planetary Photojournal. NASA. Archived from the original on November 5, 2012. Retrieved May 4, 2006.
    111. "PIA08737: Crater Studies on Titan". Planetary Photojournal. NASA. Archived from the original on May 31, 2012. Retrieved September 15, 2006.
    112. "PIA08425: Radar Images the Margin of Xanadu". Planetary Photojournal. NASA. Archived from the original on June 8, 2011. Retrieved September 26, 2006.
    113. "PIA08429: Impact Craters on Xanadu". Planetary Photojournal. NASA. Archived from the original on July 16, 2012. Retrieved September 26, 2006.
    114. Lucas; et al. (2014). "Insights into Titan's geology and hydrology based on enhanced image processing of Cassini RADAR data" (PDF). Journal of Geophysical Research. 119 (10): 2149–2166. Bibcode:2014JGRE..119.2149L. doi:10.1002/2013JE004584. Archived (PDF) from the original on July 1, 2021. Retrieved December 7, 2019.
    115. Ivanov, B. A.; Basilevsky, A. T.; Neukum, G. (1997). "Atmospheric entry of large meteoroids: implication to Titan". Planetary and Space Science. 45 (8): 993–1007. Bibcode:1997P&SS...45..993I. doi:10.1016/S0032-0633(97)00044-5.
    116. Artemieva, Natalia; Lunine, Jonathan I. (2003). "Cratering on Titan: impact melt, ejecta, and the fate of surface organics". Icarus. 164 (2): 471–480. Bibcode:2003Icar..164..471A. doi:10.1016/S0019-1035(03)00148-9.
    117. Owen, Tobias (2005). "Planetary science: Huygens rediscovers Titan". Nature. 438 (7069): 756–757. Bibcode:2005Natur.438..756O. doi:10.1038/438756a. PMID 16363022. S2CID 4421251.
    118. Media Relations Office: Cassini Imaging Central Laboratory For Operations (2009). "Cassini Finds Hydrocarbon Rains May Fill The Lakes". Space Science Institute, Boulder, Colorado. Archived from the original on July 25, 2011. Retrieved January 29, 2009.
    119. Moore, J.M.; Pappalardo, R.T. (2008). "Titan: Callisto With Weather?". American Geophysical Union, Fall Meeting. 11: P11D–06. Bibcode:2008AGUFM.P11D..06M.
    120. Neish, C.D.; Lorenz, R.D.; O'Brien, D.P. (2005). "Shape and thermal modeling of the possible cryovolcanic dome Ganesa Macula on Titan: Astrobiological implications". Lunar and Planetary Laboratory, University of Arizona, Observatoire de la Cote d'Azur. Archived from the original on August 14, 2007. Retrieved August 27, 2007.
    121. Lakdawalla, Emily (2008). "Genesa Macula Isn't A Dome". The Planetary Society. Archived from the original on June 18, 2013. Retrieved January 30, 2009.
    122. Sotin, C.; Jaumann, R.; Buratti, B.; Brown, R.; Clark, R.; Soderblom, L.; Baines, K.; Bellucci, G.; Bibring, J.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Cruikshank, D. P.; Drossart, P.; Formisano, V.; Langevin, Y.; Matson, D. L.; McCord, T. B.; Nelson, R. M.; Nicholson, P. D.; Sicardy, B.; Lemouelic, S.; Rodriguez, S.; Stephan, K.; Scholz, C. K. (2005). "Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan". Nature. 435 (7043): 786–789. Bibcode:2005Natur.435..786S. doi:10.1038/nature03596. PMID 15944697. S2CID 4339531.
    123. LeCorre, L.; LeMouélic, S.; Sotin, C. (2008). "Cassini/VIMS observations of cryo-volcanic features on Titan" (PDF). Lunar and Planetary Science. XXXIX (1391): 1932. Bibcode:2008LPI....39.1932L. Archived (PDF) from the original on October 25, 2012.
    124. "Mountain range spotted on Titan". BBC News. December 12, 2006. Archived from the original on October 31, 2012. Retrieved August 6, 2007.
    125. "Mountains Discovered on Saturn's Largest Moon". Newswise. Archived from the original on May 31, 2013. Retrieved July 2, 2008.
    126. Lakdawalla, Emily (December 17, 2008). "AGU: Titan: Volcanically active world, or "Callisto with weather?". The Planetary Society. Archived from the original on June 18, 2013. Retrieved October 11, 2010.
    127. Shiga, David (March 28, 2009). "Giant 'ice flows' bolster case for Titan's volcanoes". New Scientist.
    128. Lovett, Richard A. (2010). "Saturn Moon Has Ice Volcano—And Maybe Life?". National Geographic. Archived from the original on October 19, 2012. Retrieved December 19, 2010.
    129. Wood, C.A.; Radebaugh, J. (2020). "Morphologic Evidence for Volcanic Craters near Titan's North Polar Region". Journal of Geophysical Research: Planets. 125 (8): e06036. Bibcode:2020JGRE..12506036W. doi:10.1029/2019JE006036. S2CID 225752345.
    130. "Cassini Spies Titan's Tallest Peaks". NASA. 2016. Archived from the original on August 19, 2016. Retrieved August 12, 2016.
    131. Fortes, A. D.; Grindroda, P.M.; Tricketta, S. K.; Vočadloa, L. (May 2007). "Ammonium sulfate on Titan: Possible origin and role in cryovolcanism". Icarus. 188 (1): 139–153. Bibcode:2007Icar..188..139F. doi:10.1016/j.icarus.2006.11.002.
    132. Wood, C.A. "Titan's Global Crustal Thickening Event" (PDF). Universities Space Research Association. Archived (PDF) from the original on July 1, 2021. Retrieved February 26, 2021.
    133. Mountains of Titan Map – 2016 Update, NASA JPL, March 23, 2016, archived from the original on November 1, 2016, retrieved October 31, 2016
    134. Roe, H. G. (2004). "A new 1.6-micron map of Titan's surface" (PDF). Geophys. Res. Lett. 31 (17): L17S03. Bibcode:2004GeoRL..3117S03R. CiteSeerX 10.1.1.67.3736. doi:10.1029/2004GL019871. Archived (PDF) from the original on July 1, 2021. Retrieved December 7, 2019.
    135. Lorenz, R. (2003). "The Glitter of Distant Seas" (PDF). Science. 302 (5644): 403–404. doi:10.1126/science.1090464. PMID 14526089. S2CID 140157179. Archived from the original (PDF) on February 15, 2020.
    136. Goudarzi, Sara (May 4, 2006). "Saharan Sand Dunes Found on Saturn's Moon Titan". SPACE.com. Archived from the original on August 4, 2011. Retrieved August 6, 2007.
    137. Lorenz, R. D. (July 30, 2010). "Winds of Change on Titan". Science. 329 (5991): 519–20. Bibcode:2010Sci...329..519L. doi:10.1126/science.1192840. PMID 20671175. S2CID 41624889.
    138. Lorenz, RD; Wall, S; Radebaugh, J; Boubin, G; Reffet, E; Janssen, M; Stofan, E; Lopes, R; et al. (2006). "The sand seas of Titan: Cassini RADAR observations of longitudinal dunes" (PDF). Science. 312 (5774): 724–727. Bibcode:2006Sci...312..724L. doi:10.1126/science.1123257. PMID 16675695. S2CID 39367926. Archived (PDF) from the original on July 23, 2018. Retrieved April 12, 2020.
    139. Stanford, © Stanford University; Notice, California 94305 Copyright Complaints Trademark (May 10, 2006). "Study of Saturn's moon finds Titan's liquid oceans are likely solid seas of sand". Stanford University. Retrieved June 9, 2022.
    140. "Violent Methane Storms on Titan May Explain Dune Direction". Spaceref. 2015. Archived from the original on April 19, 2015. Retrieved April 19, 2015.
    141. "Cassini Sees the Two Faces of Titan's Dunes". JPL, NASA. Archived from the original on May 2, 2013.
    142. Lancaster, N. (2006). "Linear Dunes on Titan". Science. 312 (5774): 702–703. doi:10.1126/science.1126292. PMID 16675686. S2CID 126567530.
    143. "Titan's Smoggy Sand Grains". JPL, NASA. 2008. Archived from the original on May 23, 2013. Retrieved May 6, 2008.
    144. "Dunes on Titan need firm winds to move". Spaceref. 2015. Archived from the original on April 23, 2015. Retrieved April 23, 2015.
    145. Crane, Leah (March 27, 2017). "Electrified sand could explain Titan's backward dunes". New Scientist: 18. Archived from the original on November 12, 2020. Retrieved February 4, 2021.
    146. Rodriguez, S.; Le Mouélic, S.; Barnes, J. W.; et al. (2018). "Observational evidence for active dust storms on Titan at equinox" (PDF). Nature Geoscience. 11 (10): 727–732. Bibcode:2018NatGe..11..727R. doi:10.1038/s41561-018-0233-2. S2CID 134006536. Archived (PDF) from the original on July 1, 2021. Retrieved December 7, 2019.
    147. McCartney, Gretchen; Brown, Dwayne; Wendel, JoAnna; Bauer, Markus (September 24, 2018). "Dust Storms on Titan Spotted for the First Time". NASA. Archived from the original on January 11, 2021. Retrieved September 24, 2018.
    148. Benton, Julius L. Jr. (2005). Saturn and How to Observe It. London: Springer. pp. 141–146. doi:10.1007/1-84628-045-1_9. ISBN 978-1-84628-045-0.
    149. "Planetary Satellite Physical Parameters". JPL (Solar System Dynamics). April 3, 2009. Archived from the original on May 22, 2009. Retrieved June 29, 2010.
    150. Kuiper, G. P. (1944). "Titan: a Satellite with an Atmosphere". Astrophysical Journal. 100: 378. Bibcode:1944ApJ...100..378K. doi:10.1086/144679.
    151. "The Pioneer Missions". Pioneer Project. NASA, Jet Propulsion Laboratory. March 26, 2007. Archived from the original on June 29, 2011. Retrieved August 19, 2007.
    152. "40 Years Ago: Pioneer 11 First to Explore Saturn". NASA. September 3, 2019. Archived from the original on August 24, 2021. Retrieved February 22, 2020.
    153. "Voyager Camera Desc". Planetary Data System. November 21, 2021. Archived from the original on November 7, 2021. Retrieved November 21, 2021.
    154. Bell, Jim (February 24, 2015). The Interstellar Age: Inside the Forty-Year Voyager Mission. Penguin Publishing Group. p. 93. ISBN 978-0-698-18615-6. Archived from the original on September 4, 2016.
    155. Richardson, J.; Lorenz, Ralph D.; McEwen, Alfred (2004). "Titan's Surface and Rotation: New Results from Voyager 1 Images". Icarus. 170 (1): 113–124. Bibcode:2004Icar..170..113R. doi:10.1016/j.icarus.2004.03.010.
    156. "Cassini Equinox Mission: Titan Flyby (T-70) – June 21, 2010". NASA/JPL. Archived from the original on March 18, 2012. Retrieved July 8, 2010.
    157. Lingard, Steve; Norris, Pat (June 2005). "How To Land on Titan". Ingenia Magazine (23). Archived from the original on July 21, 2011. Retrieved January 11, 2009.
    158. "Cassini at Saturn: Introduction". NASA, Jet Propulsion Laboratory. Archived from the original on April 3, 2009. Retrieved September 6, 2007.
    159. "Huygens Exposes Titan's Surface". Space Today. Archived from the original on August 7, 2011. Retrieved August 19, 2007.
    160. "Seeing, touching and smelling the extraordinarily Earth-like world of Titan". ESA News, European Space Agency. January 21, 2005. Archived from the original on October 7, 2011. Retrieved March 28, 2005.
    161. "PIA07232: First Color View of Titan's Surface". NASA/JPL/ESA/University of Arizona. January 15, 2005. Archived from the original on May 6, 2021. Retrieved February 13, 2021.
    162. "Huygens landing site to be named after Hubert Curien". ESA. March 5, 2007. Archived from the original on March 3, 2012. Retrieved August 6, 2007.
    163. "NASA New Frontiers 5: Third Community Announcement". NASA Science Mission Directorate. May 12, 2021. Retrieved May 14, 2021 via SpaceRef.
    164. Foust, Jeff (September 25, 2020). "NASA delays Dragonfly launch by a year". SpaceNews. Archived from the original on September 26, 2020. Retrieved September 25, 2020.
    165. Bridenstine, Jim (June 27, 2019). "New Science Mission to Explore Our Solar System". Twitter. Archived from the original on January 27, 2020. Retrieved June 27, 2019.
    166. Brown, David W. (June 27, 2019). "NASA Announces New Dragonfly Drone Mission to Explore Titan - The quadcopter was selected to study the moon of Saturn after a "Shark Tank"-like competition that lasted two and a half years". The New York Times. Archived from the original on May 20, 2020. Retrieved June 27, 2019.
    167. Dragonfly: A Rotorcraft Lander Concept for Scientific Exploration at Titan. Archived December 22, 2017, at the Wayback Machine (PDF). Ralph D. Lorenz, Elizabeth P. Turtle, Jason W. Barnes, Melissa G. Trainer, Douglas S. Adams, Kenneth E. Hibbard, Colin Z. Sheldon, Kris Zacny, Patrick N. Peplowski, David J. Lawrence, Michael A. Ravine, Timothy G. McGee, Kristin S. Sotzen, Shannon M. MacKenzie, Jack W. Langelaan, Sven Schmitz, Larry S. Wolfarth, and Peter D. Bedini. Johns Hopkins APL Technical Digest, Pre-publication draft (2017).
    168. "Mission Summary: TANDEM/TSSM Titan and Enceladus Mission". ESA. 2009. Archived from the original on May 23, 2011. Retrieved January 30, 2009.
    169. Rincon, Paul (February 18, 2009). "Jupiter in space agencies' sights". BBC News. Archived from the original on October 24, 2010.
    170. Stofan, Ellen (2010). "TiME: Titan Mare Explorer" (PDF). Caltech. Archived from the original (PDF) on March 30, 2012. Retrieved August 17, 2011.
    171. Taylor, Kate (May 9, 2011). "NASA picks project shortlist for next Discovery mission". TG Daily. Archived from the original on September 4, 2012. Retrieved May 20, 2011.
    172. Greenfieldboyce, Nell (September 16, 2009). "Exploring A Moon By Boat". National Public Radio (NPR). Archived from the original on August 25, 2012. Retrieved November 8, 2009.
    173. "NASA Announces Three New Mission Candidates". NASA Discovery Program. May 5, 2011. Archived from the original on November 18, 2016. Retrieved June 13, 2017.
    174. "Let's go sailing on lakes of Titan!". Scientific American. November 1, 2009. Archived from the original on October 10, 2012.
    175. "AVIATR: An Airplane Mission for Titan". Universetoday.com. January 2, 2012. Archived from the original on March 28, 2013. Retrieved February 26, 2013.
    176. "Soaring on Titan: Drone designed to scout Saturn's moon". NBC News. January 10, 2012. Archived from the original on April 13, 2014. Retrieved February 26, 2013.
    177. Urdampilleta, I.; Prieto-Ballesteros, O.; Rebolo, R.; Sancho, J., eds. (2012). "TALISE: Titan Lake In-situ Sampling Propelled Explorer" (PDF). European Planetary Science Congress 2012. Vol. 7, EPSC2012-64 2012. EPSC Abstracts. Archived (PDF) from the original on October 12, 2012. Retrieved October 10, 2012.
    178. Landau, Elizabeth (October 9, 2012). "Probe would set sail on a Saturn moon". CNN – Light Years. Archived from the original on June 19, 2013. Retrieved October 10, 2012.
    179. Sotin, C.; Altwegg, K.; Brown, R. H.; et al. (2011). JET: Journey to Enceladus and Titan (PDF). 42nd Lunar and Planetary Science Conference. Lunar and Planetary Institute. Archived (PDF) from the original on April 15, 2015.
    180. Matousek, Steve; Sotin, Christophe; Goebel, Dan; Lang, Jared (June 18–21, 2013). JET: Journey to Enceladus and Titan (PDF). Low Cost Planetary Missions Conference. California Institute of Technology. Archived from the original (PDF) on March 4, 2016. Retrieved April 10, 2015.
    181. Kane, Van (April 3, 2014). "Discovery Missions for an Icy Moon with Active Plumes". The Planetary Society. Archived from the original on April 16, 2015. Retrieved April 9, 2015.
    182. Hall, Loura (May 30, 2014). "Titan Submarine: Exploring the Depths of Kraken". Archived from the original on July 30, 2015.
    183. Overbye, Dennis (February 21, 2021). "Seven Hundred Leagues Beneath Titan's Methane Seas - Mars, Shmars; this voyager is looking forward to a submarine ride under the icebergs on Saturn's strange moon". The New York Times. Archived from the original on December 28, 2021. Retrieved February 21, 2021.
    184. Oleson, Steven R.; Lorenz, Ralph D.; Paul, Michael V. (July 1, 2015). "Phase I Final Report: Titan Submarine". NASA. Archived from the original on July 24, 2021. Retrieved February 21, 2021.
    185. Lewin, Sarah (July 15, 2015). "NASA Funds Titan Submarine, Other Far-Out Space Exploration Ideas". Space.com. Archived from the original on August 4, 2015.
    186. Lorenz, R. D.; Oleson, S.; Woytach, J.; Jones, R.; Colozza, A.; Schmitz, P.; Landis, G.; Paul, M.; and Walsh, J. (March 16–20, 2015). "Titan Submarine: Vehicle Design and Operations Concept for the Exploration of the Hydrocarbon Seas of Saturn's Giant Moon", 46th Lunar and Planetary Science Conference, The Woodlands, Texas. LPI Contribution No. 1832, p.1259
    187. Hartwig, J., et al., (June 24–26, 2015). "Titan Submarine: Exploring the Depths of Kraken Mare", 26th Space Cryogenics Workshop, Phoenix, Arizona. link to NASA Report Archived November 23, 2020, at the Wayback Machine. Retrieved June 13, 2017.
    188. "Saturn's moon Titan may harbour simple life forms – and reveal how organisms first formed on Earth". The Conversation. July 27, 2017. Archived from the original on August 30, 2017. Retrieved August 30, 2017.
    189. The Habitability of Titan and its Ocean. Archived June 3, 2021, at the Wayback Machine Keith Cooper, Astrobiology Magazine. July 12, 2019.
    190. Grasset, O.; Sotin, C.; Deschamps, F. (2000). "On the internal structure and dynamic of Titan". Planetary and Space Science. 48 (7–8): 617–636. Bibcode:2000P&SS...48..617G. doi:10.1016/S0032-0633(00)00039-8.
    191. Fortes, A. D. (2000). "Exobiological implications of a possible ammonia-water ocean inside Titan". Icarus. 146 (2): 444–452. Bibcode:2000Icar..146..444F. doi:10.1006/icar.2000.6400.
    192. Mckay, Chris (2010). "Have We Discovered Evidence For Life On Titan". New Mexico State University, College of Arts and Sciences, Department of Astronomy. Archived from the original on March 9, 2016. Retrieved May 15, 2014.
    193. Raulin, F. (2005). "Exo-astrobiological aspects of Europa and Titan: From observations to speculations". Space Science Reviews. 116 (1–2): 471–487. Bibcode:2005SSRv..116..471R. doi:10.1007/s11214-005-1967-x. S2CID 121543884.
    194. Staff (October 4, 2010). "Lakes on Saturn's Moon Titan Filled With Liquid Hydrocarbons Like Ethane and Methane, Not Water". ScienceDaily. Archived from the original on October 20, 2012. Retrieved October 5, 2010.
    195. Raulin, F.; Owen, T. (2002). "Organic chemistry and exobiology on Titan". Space Science Reviews. 104 (1–2): 377–394. Bibcode:2002SSRv..104..377R. doi:10.1023/A:1023636623006. S2CID 49262430.
    196. Staff (October 8, 2010). "Titan's haze may hold ingredients for life". Astronomy. Archived from the original on September 23, 2015. Retrieved October 14, 2010.
    197. Desai, R. T.; A. J. Coates; A. Wellbrock; V. Vuitton; D. González-Caniulef; et al. (2017). "Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan's Ionosphere". Astrophys. J. Lett. 844 (2): L18. arXiv:1706.01610. Bibcode:2017ApJ...844L..18D. doi:10.3847/2041-8213/aa7851. S2CID 32281365.
    198. "Has Cassini found a universal driver for prebiotic chemistry at Titan?". European Space Agency. July 26, 2017. Archived from the original on August 13, 2017. Retrieved August 12, 2017.
    199. Wall, Mike (July 28, 2017). "Saturn Moon Titan Has Molecules That Could Help Make Cell Membranes". Space.com. Archived from the original on July 29, 2017. Retrieved July 29, 2017.
    200. Palmer, Maureen Y.; et al. (July 28, 2017). "ALMA detection and astrobiological potential of vinyl cyanide on Titan". Science Advances. 3 (7): e1700022. Bibcode:2017SciA....3E0022P. doi:10.1126/sciadv.1700022. PMC 5533535. PMID 28782019.
    201. Kaplan, Sarah (August 8, 2017). "This weird moon of Saturn has some essential ingredients for life". Washington Post. Archived from the original on August 8, 2017. Retrieved August 8, 2017.
    202. Staff (October 11, 2018). ""A Prebiotic Earth" – Missing Link Found on Saturn's Moon Titan". DailyGalaxy.com. Archived from the original on August 14, 2021. Retrieved October 11, 2018.
    203. Zhao, Long; et al. (October 8, 2018). "Low-temperature formation of polycyclic aromatic hydrocarbons in Titan's atmosphere" (PDF). Nature Astronomy. 2 (12): 973–979. Bibcode:2018NatAs...2..973Z. doi:10.1038/s41550-018-0585-y. S2CID 105480354. Archived (PDF) from the original on July 2, 2021. Retrieved April 12, 2020.
    204. Artemivia, N.; Lunine, Jonathan I. (2003). "Cratering on Titan: impact melt, ejecta, and the fate of surface organics". Icarus. 164 (2): 471–480. Bibcode:2003Icar..164..471A. doi:10.1016/S0019-1035(03)00148-9.
    205. Lovett, Richard A. (March 20, 2008). "Saturn Moon Titan May Have Underground Ocean". National Geographic. Archived from the original on October 18, 2012.
    206. McKay, C. P.; Smith, H. D. (2005). "Possibilities for methanogenic life in liquid methane on the surface of Titan". Icarus. 178 (1): 274–276. Bibcode:2005Icar..178..274M. doi:10.1016/j.icarus.2005.05.018. Archived from the original on March 9, 2021. Retrieved March 18, 2020.
    207. The Limits of Organic Life in Planetary Systems. Committee on the Limits of Organic Life in Planetary Systems, Committee on the Origins and Evolution of Life, National Research Council. The National Academies Press. 2007. p. 74. doi:10.17226/11919. ISBN 978-0-309-10484-5. Archived from the original on August 20, 2015. Retrieved February 20, 2022.
    208. "What is Consuming Hydrogen and Acetylene on Titan?". NASA/JPL. 2010. Archived from the original on June 29, 2011. Retrieved June 6, 2010.
    209. Strobel, Darrell F. (2010). "Molecular hydrogen in Titan's atmosphere: Implications of the measured tropospheric and thermospheric mole fractions" (PDF). Icarus. 208 (2): 878–886. Bibcode:2010Icar..208..878S. doi:10.1016/j.icarus.2010.03.003. Archived from the original (PDF) on August 24, 2012.
    210. "Life 'not as we know it' possible on Saturn's moon Titan". Archived from the original on March 17, 2015.
    211. Stevenson, James; Lunine, Jonathan I.; Clancy, Paulette (February 27, 2015). "Membrane alternatives in worlds without oxygen: Creation of an azotosome". Science Advances. 1 (1): e1400067. Bibcode:2015SciA....1E0067S. doi:10.1126/sciadv.1400067. PMC 4644080. PMID 26601130.
    212. Bortman, Henry (August 11, 2004). "Saturn's Moon Titan: Prebiotic Laboratory -- Interview with Jonathan Lunine". Astrobiology Magazine. Archived from the original on August 28, 2004. Retrieved August 11, 2004.
    213. "Earth could seed Titan with life". BBC News. March 18, 2006. Archived from the original on October 31, 2012. Retrieved March 10, 2007.
    214. Gladman, Brett; Dones, Luke; Levinson, Harold F.; Burns, Joseph A. (2005). "Impact Seeding and Reseeding in the Inner Solar System". Astrobiology. 5 (4): 483–496. Bibcode:2005AsBio...5..483G. doi:10.1089/ast.2005.5.483. PMID 16078867.
    215. Lunine, Jonathan I. (2008). "Saturn's Titan: A Strict Test for Life's Cosmic Ubiquity" (PDF). Proceedings of the American Philosophical Society. 153 (4): 403. arXiv:0908.0762. Bibcode:2009arXiv0908.0762L. Archived from the original (PDF) on May 12, 2013. copy at archive.org
    216. The National Air and Space Museum (2012). "Climate Change in the Solar System". Archived from the original on March 11, 2012. Retrieved January 14, 2012.
    217. Lorenz, Ralph D.; Lunine, Jonathan I.; McKay, Christopher P. (1997). "Titan under a red giant sun: A new kind of "habitable" moon" (PDF). NASA Ames Research Center, Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona. 24 (22): 2905–8. Bibcode:1997GeoRL..24.2905L. CiteSeerX 10.1.1.683.8827. doi:10.1029/97gl52843. PMID 11542268. Archived (PDF) from the original on July 24, 2011. Retrieved March 21, 2008.

    Bibliography

    Further reading

    • Lorenz, Ralph; Mitton, Jacqueline (2002). Lifting Titan's Veil: Exploring the Giant Moon of Saturn. Cambridge University Press. ISBN 978-0-521-79348-3.
    • Lorenz, Ralph; Mitton, Jacqueline (2008). Titan Unveiled. Princeton University Press. ISBN 978-0691146331.
    • Lorenz, Ralph (2017). NASA/ESA/ASI Cassini-Huygens: 1997 onwards (Cassini orbiter, Huygens probe and future exploration concepts) (Owners' Workshop Manual). Haynes Manuals, UK. ISBN 978-1785211119.
    • Jonathan O'Callaghan: A map of Saturn's largest moon. Nature, Vol 575, 426–427, 2019.

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.