Variedad diferenciable

En geometría y topología, una variedad diferenciable es un tipo especial de variedad topológica, a la que podemos extender las nociones de cálculo diferencial que normalmente usamos en . En una variedad diferenciable M podremos definir una función diferenciable , y campos de tensores diferenciables (incluidos campos de vectores). El estudio del cálculo en variedades diferenciables se conoce como geometría diferencial.

Introducción

Para un desarrollo informal del tema

Generalización de los conceptos de curva y superficie

Una variedad diferenciable representa una generalización, en dos aspectos básicos, del concepto de superficie diferenciable:

  • Supone la generalización a cualquier número de dimensiones. En dimensión 1, una variedad es una curva. En dimensión 2, una superficie sería un ejemplo de variedad.
  • Supone otra generalización al intentar definir una variedad de modo intrínseco. Por ejemplo, una curva o una superficie suelen describirse embebidas en un espacio ambiente R³, pero podrían describirse sin hacer alusión a él. Es más, existen casos de variedades de dimensión 2 que no podrán verse embebidas en un espacio euclídeo de dimensión 3 (pero sí de dimensión superior).

Antes de hacer la segunda generalización, podríamos pensar que una variedad es diferenciable, informalmente hablando, si cada uno de sus puntos tiene espacio tangente, es decir, no tiene "picos" ni "filos". Pero para hacer una definición formal necesitaremos que esta no haga alusión a un posible embebimiento de la variedad en un espacio ambiente.

Un poco de historia

Riemann, en el siglo XIX, observó la importancia de definir la noción de variedad de un modo intrínseco, sin requerir que el espacio topológico subyacente estuviera embebido en un espacio afín. La definición formal precisa fue introducida por primera vez por Hermann Weyl en 1913.

Las variedades diferenciables aparecen en diversos campos de la Física:

Conceptos previos de variedades topológicas

Recordemos los conceptos de variedad topológica y de cartas:

  • Una variedad topológica de dimensión es un espacio topológico (que suele suponerse Hausdorff y ANII) en el que para cada existe un entorno abierto homeomorfo a un abierto de mediante .
  • Un par bajo estas condiciones se denomina carta o sistema coordenado sobre para , y la aplicación se denomina aplicación coordenada para .
  • Cada aplicación coordenada se podrá desglosar como un conjunto de n funciones coordenadas : en efecto, si para cada convenimos en representar por a la función que a cada le hace corresponder (es decir, la -ésima coordenada de ), denominaremos a la aplicación como la función coordenada para .

Podríamos cuestionarnos cómo sería posible determinar si una función definida en una variedad topológica es una función diferenciable. Aparentemente bastaría exigir que , su expresión en un entorno coordenado sea diferenciable. Pero esta condición no sería consistente si realizamos un cambio de carta. En efecto, si observamos su expresión en otra carta:

,

necesitaremos para mantener la consistencia que el cambio de cartas representado por el último paréntesis sea diferenciable. Esta exigencia es la base de la definición de estructura diferenciable.

Definición

Estructura diferenciable

Dada una variedad topológica y un número entero , una estructura diferenciable (o atlas maximal) de clase sobre es una familia de sistemas coordenados sobre de manera que se cumpla que:

  1. recubre M, es decir, ,
  2. dados dos cualesquiera ha de ocurrir que la aplicación , llamada cambio de cartas sea diferenciable de orden .
  3. es maximal (relativo al orden dado por la inclusión de conjuntos) entre todas las familias de entornos coordenados sobre bajo las condiciones 1 y 2.

Variedad diferenciable

Se dice que el par formado por la variedad topológica M de dimensión n y por la estructura diferenciable F de clase r es una variedad diferenciable de dimensión y clase .

Hay una cierta confusión sobre la terminología variedad diferenciable (sin más especificaciones) y variedad suave. En cualquier caso, para evitar confusiones, todos los textos indican qué entienden por variedad diferenciable.

Subvariedad diferenciable

Es cualquier subconjunto de una variedad diferenciable que mediante la topología inducida de la variedad original sigue teniendo estructura de variedad diferenciable. En general las subvariedades diferenciables son los subconjuntos de puntos para los cuales es posible definir localmente una función diferenciable f que satisfaga:

Los conjuntos no suaves, o que satisfaciendo una ecuación similar a la anterior pero donde f no fuera diferenciable en general no constituyen subvariedades diferenciables.

Cálculo en variedades

Aspectos que se generalizan

Muchas de las técnicas del cálculo multivariable son aplicables mutatis mutandis en variedades diferenciables. Podemos definir la derivada direccional de una función diferenciable en la dirección marcada por un vector tangente a la variedad. Dicha derivada se comportará de modo similar al de la derivada ordinaria de una función definida en el espacio euclídeo, al menos localmente: habrá versiones del teorema de la función implícita y de función inversa.

Sin embargo, la derivada direccional de un campo de vectores no estará definida de forma directa. Existen varias generalizaciones que captan ciertas características formales de la derivación en espacios euclídeos. Las principales son:

  • La derivada de Lie, que queda definida de forma única por la estructura diferenciable, pero deja de satisfacer alguna de las propiedades de la derivada direccional.
  • Una conexión afín que no está definida de forma única, por lo que debe ser especificada como un dato añadido a la variedad. Presenta una generalización más completa de las características de la derivada direccional ordinaria.

Las ideas del cálculo integral también pueden extenderse a las variedades diferenciables. Encontrarán su expresión natural en el lenguaje del cálculo exterior con formas diferenciables. Teoremas fundamentales del cálculo integral en varias variables, en particular el teorema de Green, el de la divergencia y el de Stokes se generalizan en un solo teorema llamado teorema de Stokes.

Vectores tangentes en un punto

En una variedad abstracta, al no considerarse embebida en ningún espacio ambiente, no podremos visualizar el espacio tangente como un subespacio afín del ambiente. La generalización del concepto de espacio tangente requerirá concebir los vectores tangentes como operadores que representan una derivada direccional.

En podemos visualizar un vector como un operador que actúa sobre una función diferenciable en un entorno cualquiera de p, y nos devuelve su derivada en la dirección marcada por :

En los años 1960 surge la definición axiomática de vector tangente en un punto de una variedad, como generalización de lo anterior. Un vector tangente a una variedad será un operador que satisfaga:

  1. la condición de linealidad:
  2. la regla de Leibniz: .

El conjunto de vectores tangentes en un punto forman un espacio vectorial de la misma dimensión que la variedad llamado espacio tangente en p y notado como . En principio, espacios tangentes en puntos distintos no son comparables. Pero podemos formar con ellos una variedad de dimensión el doble de la dimensión de M, que se llamará fibrado tangente y se notará como TM. Como conjunto,

Aplicaciones diferenciables

Una aplicación se dirá diferenciable si su expresión en cartas lo es. Formalmente, F es diferenciable si para todo punto p de M podemos encontrar una carta de M que lo contenga y una carta de N que contenga a F(p) tales que sea diferenciable.

Una aplicación diferenciable induce un homomorfismo de espacios vectoriales entre los espacios tangentes respectivos. Al igual que en el cálculo diferencial ordinario, podremos aproximar un objeto diferenciable (F) por un objeto lineal ( ).

Relación con variedades topológicas

Dada una variedad topológica, nos podemos preguntar si admitirá siempre una estructura diferenciable o si dicha estructura será única. En primer lugar, según un teorema debido a Whitney, en cualquier variedad con una estructura con k>0, hay una única estructura C compatible con la anterior.

La existencia y unicidad está garantizada en dimensiones menores que 4:

  • Toda variedad topológica de dimensión 1, 2, o 3 tiene una única estructura diferenciable (salvo difeomorfismos).

La situación es diferente en dimensión superior:

  • Se conocen ejemplos de variedades topológicas que no admiten ninguna estructura diferenciable (Teorema de Donaldson),
  • y de otras que admiten múltiples estructuras difeomorfas (incluso una cantidad no numerable de ellas).

Algunos ejemplos:

  • Sólo hay una estructura diferenciable (salvo difeomorfismos) sobre excepto cuando n = 4, caso que admite un número no numerable de estructuras diferenciables.
  • La siguiente tabla muestra el número de estructuras diferenciables (módulo homeomorfismos que conservan la orientación) sobre la n-esferas para dimensiones n < 19. Las esferas con estructuras diferenciables diferentes de la usual se conocen con el nombre de esferas exóticas.
Dimensión123456789101112131415161718
Estructuras111 ?11282869921321625621616

Definiciones alternativas

Existen al menos dos maneras de definir lo que es una variedad diferenciable, ambas equivalentes: por medio de parametrizaciones o por medio de aplicaciones coordenadas. La diferencia es sutil, pero importante.

Además, en el caso de espacios euclídeos existe una serie de definiciones equivalentes que son más sencillas que en el caso general.

Definición mediante parametrizaciones.

Sea un conjunto (en principio pudiera ser vacío, pero es un caso trivial), y dos números enteros, una familia en la que cada es un abierto y cada una aplicación inyectiva, de manera que se cumpla que:

  1. ,
  2. dados cualesquiera dos de forma que ha de ocurrir que y son abiertos de y la aplicación es diferenciable de orden en (i.e., ).

bajo estas condiciones, cada par de manera que se denomina una carta local o sistema de coordenadas de en , se denomina parametrización de para , se denomina entorno coordenado de , y la familia es denominada una atlas sobre . Si un atlas es maximal (relativo al orden dado por la inclusión de conjuntos) entre todos los atlas sobre (por supuesto bajo las condiciones 1 y 2, ya que de otra manera no sería atlas) se dice que el atlas es una estructura diferenciable sobre .

El conjunto (donde aquí representa la topología del conjunto ) no es otra cosa que la topología final en para la familia . Cuando se toma una estructura diferenciable sobre y la topología final en para esa estructura diferenciable hace de un espacio topológico que cumple el segundo axioma de numerabilidad y la propiedad de Hausdorff, entonces se dice que el par formado por el conjunto y la estructura diferenciable sobre es una variedad topológica de dimensión y clase . Cuando además , entonces se dice que es una variedad diferenciable (de dimensión y clase ).

Definiciones en espacios euclídeos

Existen al menos cuatro maneras (todas equivalentes entre sí) de definir una variedad diferencial cuando se las considera como subconjuntos de un espacio euclídeo. Cada una de ellas es útil, y dependiendo del contexto o de la dificultad del problema se usará una u otra, o incluso se combinarán varias a la vez.

Representación implícita de una variedad diferenciable

Sea un espacio euclídeo de dimensión y sea . Diremos que es una variedad diferenciable en de dimensión (donde es un número entero) y clase (donde es un número entero) si para cada existe un entorno abierto de y una aplicación de manera que:

  1. es de clase sobre (esto es, ),
  2. la matriz jacobiana de tiene rango (es decir, ),
  3. .

A la igualdad la llamaremos representación implícita local de la variedad en el punto , o simplemente diremos que la variedad viene dada implícitamente por en .

Si existe un abierto y una aplicación (donde es un número entero) de manera que , a la igualdad se la denomina representación implícita global de la variedad, o se dice simplemente que la variedad viene dada implícitamente por . En este caso podemos tomar como representación implícita local para cada punto de el abierto y la aplicación .

Representación explícita de una variedad diferenciable

Sea un espacio euclídeo de dimensión y sea . Diremos que es una variedad diferenciable en de dimensión (donde es un número entero) y clase (donde es un número entero) si para cada existen:

  1. una base de ,
  2. un abierto de , donde se define el subespacio como el espacio generado por ,
  3. un abierto de , donde se define el subespacio como el espacio generado por ,
  4. una aplicación de clase r sobre V (esto es, )de manera que y .

La última condición equivale a decir que es la gráfica de . A la igualdad , o simplemente a la aplicación , se le denomina representación explícita local de la variedad en el punto . Si existe una única aplicación tal que , entonces se denomina representación explícita global de la variedad.

Representación difeomórfica local de una variedad diferenciable

Sea un espacio euclídeo de dimensión y sea . Diremos que es una variedad diferenciable en de dimensión (donde es un número entero) y clase (donde es un número entero) si para cada existe un entorno abierto de y una aplicación de manera que:

  1. es un difeomorfismo de clase entre y su imagen (esto es, es inyectiva),
  2. .

A la aplicación la llamaremos representación difeomórfica local de la variedad en el punto .

Hay que observar que, a consecuencia de ser difeomorfismo local y abierto, es también un abierto de .

Representación paramétrica de una variedad diferenciable

Sea un espacio euclídeo de dimensión y sea . Diremos que es una variedad diferenciable en de dimensión (donde es un número entero) y clase (donde es un número entero) si para cada existe un entorno abierto de , un abierto no vacío , un elemento y una aplicación de manera que:

  1. ,
  2. la jacobiana de en es inyectiva,
  3. es un homeomorfismo de clase sobre (esto es, es continua, abierta e inyectiva) entre y (con la topología relativa).

A la aplicación la llamaremos representación paramétrica local de la variedad en el punto .

Referencias

    Bibliografía

    • William M. Boothby, An Introduction to Differenciable Manifolds and Riemannian Geometry, 2nd ed. San Diego: Academic Press, 1986.
    • Carmo, M. do, Riemannian Geometry. Boston: Birkhäuser, 1993.
    • Currás Bosch, C. Geometria diferencial: varietats diferenciables i varietats de Riemann. Barcelona: Edicions Universitat de Barcelona, 2003.
    • Girbau, J. Geometria diferencial i relativitat. Bellaterra: Publicacions de la Universitat Autònoma de Barcelona,1993.
    • Hicks, N. J. Notas sobre la geometría diferencial. Barcelona: Hispano Europea, 1973.
    • Kobayashi, S., Nomizu, K. Foundations of Differential Geometry, vol. I. New York [etc.] : Interscience, 1963.
    • Spivak, M. A. Comprehensive Introduction to Differential Geometry. Boston [Mass.]: Publish or Perish, 1970-1975.
    Volumen I,II,IV.
    • Warner, F. W. Foundations of Differentiable Manifolds and Lie Groups. New York : Springer, 1983.
    • John M. Lee, Introduction to Smooth Manifolds, (2003) Springer Graduate Texts in Mathematics 218.
    • Roger Penrose: El camino de la realidad, Ed. Debate, Barcelona, 2006, p. 464, ISBN 84-8306-681-5.
    • Spivak, Michael, Cálculo en variedades. Reverté (1988), ISBN 84-291-5142-7
    • Spivak, Michael, A comprehensive introduction to differential geometry,volume I, Publish or Perish, Inc, Houston, Texas, 1999, ISBN 0-914098-87-X.

    Enlaces externos

    Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.