Cumulant (statistiques)
En mathématiques et plus particulièrement en théorie des probabilités et en statistique, les cumulants d'une loi de probabilité sont des coefficients qui ont un rôle similaire à celui des moments. Les cumulants déterminent entièrement les moments et vice versa, c'est-à-dire que deux lois ont les mêmes cumulants si et seulement si elles ont les mêmes moments.
L'espérance constitue le premier cumulant, la variance le deuxième et le troisième moment centré constitue le troisième cumulant. En revanche les cumulants d'ordres 4 ou plus ne correspondent plus aux moments centrés.
L'utilisation des cumulants peut s'avérer utile car ils vérifient notamment la propriété suivante : le n-ième cumulant d'une somme de variables indépendantes est égal à la somme des n-ièmes cumulants de chaque variable de la somme.
Une loi avec des cumulants κn donnés peut être approchée par un développement d'Edgeworth.
Définition
Soit X une variable aléatoire à valeurs réelles. On définit d'abord la fonction génératrice des cumulants KX associée à X :
- .
Les cumulants κn sont alors définis comme les coefficients dans le développement de KX en série exponentielle :
Si on note μ = E(X) l'espérance de X et σ2 = E((X − μ)2) sa variance alors on a en particulier que μ = κ1 et σ2 = κ2.
Les cumulants sont donnés par les dérivées en 0 de KX :
La fonction génératrice des cumulants est intimement liée à la fonction génératrice des moments de la variable X. Travailler avec la fonction génératrice des cumulants est parfois plus pratique dans la mesure où pour des variables indépendantes X et Y :
Tandis qu'avec la fonction génératrice des moments on obtient :
On remarquera que
Certains auteurs[1],[2] préfèrent définir la fonction génératrice des cumulants plutôt comme le logarithme népérien de la fonction caractéristique. La fonction génératrice des cumulants prend alors parfois le nom de seconde fonction caractéristique.
La caractérisation des cumulants est valide même pour les lois dont les moments d'ordres supérieurs n'existent pas.
Cumulants de quelques distributions discrètes
Nom de la loi | Paramètres | Fonction génératrice des cumulants KX | Cumulants κn |
---|---|---|---|
Mesure de Dirac | |||
Loi de Bernoulli | |||
Loi géométrique | |||
Loi de Poisson | |||
Loi binomiale | |||
Loi binomiale négative |
En introduisant , les distributions précédentes donnent une formule unifiée pour les deux premières dérivées de la fonction génératrice des cumulants :
et
- .
Cela confirme que le premier cumulant est κ1 = μ et que le second cumulant est κ2 = με.
Les variables aléatoires constantes X = x sont telles que ε = 0. Les lois binomiales vérifient ε = 1 − p si bien que 0 < ε < 1.
Les lois de Poisson vérifient ε = 1 tandis que les lois binomiales négatives se caractérisent par ε = 1p si bien que ε > 1. Il faut noter l'analogie avec l'excentricité des coniques : cercles ε = 0, ellipses 0 < ε < 1, paraboles ε = 1, hyperboles ε > 1.
Cumulants de certaines lois continues
Nom de la loi | Paramètres | Fonction génératrice des cumulants KX | Cumulants κn |
---|---|---|---|
Loi uniforme continue |
où Bn est le n-ième nombre de Bernoulli | ||
Loi normale |
Quelques propriétés des cumulants
Invariance
Les cumulants vérifient pour tout variable aléatoire X et tout constante c les relations : κ1(X + c) = κ1(X) + c et κn(X + c) = κn(X) pour n ≥ 2. Pour résumer, c est ajouté au premier cumulant, et tous les cumulants d'ordre supérieur sont inchangés.
Homogénéité
Le n-ième cumulant est homogène de degré n, c'est-à-dire si c est une constante, alors :
Additivité
Si X et Y sont indépendants, alors les cumulants de la somme sont les sommes des cumulants :
Un résultat en demi-teinte
Sachant les résultats des cumulants de la loi normale, on pourrait espérer trouver des distributions pour lesquelles κm = κm+1 = ... = 0 pour un m > 3, et où les cumulants d'ordre inférieur (ordres 3 à m -1) sont non nuls. Il n'existe pas de telles distributions[3]. Ainsi, la fonction génératrice des cumulants ne peut être un polynôme de degré fini supérieur à 2.
Cumulants et moments
La fonction génératrice des moments est :
si bien que la fonction génératrice des cumulants est le logarithme de la fonction génératrice des moments. Le premier cumulant est l'espérance ; les deuxième et troisième cumulants sont respectivement les deuxième et troisième moments centrés (le moment centré d'ordre 2 est la variance) ; mais les cumulants d'ordre supérieur ne sont pas égaux aux moments non centrés, pas plus qu'aux moments centrés. Ce sont plutôt des polynômes de ces moments.
Les cumulants sont liés aux moments par la formule de récurrence :
Le n-ème moment mn est un polynôme de degré n des n premiers cumulants :
Les coefficients sont précisément ceux qui apparaissent dans les polynômes de Bell et, par conséquent, dans la formule de Faà di Bruno.
Les moments mn ne doivent pas être confondus avec les moments centrés μn. Pour exprimer les moments centraux en fonction des cumulants, il suffit de poser κ1=0 :
Lien avec la physique statistique
En physique statistique, un système à l'équilibre avec un bain thermique à température peut occuper des états d'énergie . Soit la densité d'états d'énergie . La fonction de partition du système est donnée par
- .
L'énergie libre du système est définie par
- .
L'énergie libre du système donne accès à l'ensemble des propriétés thermodynamiques du système comme son énergie interne, son entropie, sa chaleur spécifique…
Histoire
Les cumulants ont été définis en 1889 par l'astronome, mathématicien et actuaire danois Thorvald Nicolai Thiele (1838 - 1910). Thiele les appelle alors half-invariants (demi-invariants). Il faut attendre 1931 pour trouver l'appellation cumulants dans l'article « The derivation of the pattern formulae of two-way partitions from those of simpler patterns » par Ronald Aylmer Fisher et John Wishart (Proceedings of the London Mathematical Society, Series 2, v. 33, p. 195-208). L'historien Stephen Stigler reporte que le nom cumulant fut suggéré à Fisher dans une lettre de Harold Hotelling. La fonction de partition pour l'ensemble canonique en physique statistique a été définie par Josiah Willard Gibbs en 1901.
Voir aussi
Références
- Kendall, M. G., Stuart, A. (1969), The Advanced Theory of Statistics, Volume 1 (3rd Edition). Griffin, London (Section 3.12).
- Lukacs, E. (1970), Characteristic Functions (2d Edition). Griffin, London (Page 27).
- Lukacs, E. (1970), Characteristic Functions (2d Edition), Griffin, London (Theorem 7.3.5).
Liens externes
- (en) Eric W. Weisstein, « Cumulant », sur MathWorld
- Portail des probabilités et de la statistique