Tropoflavin

Tropoflavin
Clinical data
Other names7,8-Dihydroxyflavone
Pharmacokinetic data
Bioavailability~5% (in mice)[1]
Elimination half-life< 30 minutes (in mice)[1]
Identifiers
IUPAC name
  • 7,8-Dihydroxy-2-phenyl-4H-chromen-4-one
CAS Number
PubChem CID
ChemSpider
UNII
ChEBI
CompTox Dashboard (EPA)
ECHA InfoCard100.048.903 Edit this at Wikidata
Chemical and physical data
FormulaC15H10O4
Molar mass254.241 g·mol−1
3D model (JSmol)
SMILES
  • c1ccc(cc1)c2cc(=O)c3ccc(c(c3o2)O)O
InChI
  • InChI=1S/C15H10O4/c16-11-7-6-10-12(17)8-13(19-15(10)14(11)18)9-4-2-1-3-5-9/h1-8,16,18H
  • Key:COCYGNDCWFKTMF-UHFFFAOYSA-N

Tropoflavin, also known as 7,8-dihydroxyflavone, is a naturally occurring flavone found in Godmania aesculifolia, Tridax procumbens, and primula tree leaves.[2][3][4] It has been found to act as a potent and selective small-molecule agonist of the tropomyosin receptor kinase B (TrkB) (Kd ≈ 320 nM), the main signaling receptor of the neurotrophin brain-derived neurotrophic factor (BDNF).[5][6][7] Tropoflavin is both orally bioavailable and able to penetrate the blood–brain barrier.[8][9] A prodrug of tropoflavin with greatly improved potency and pharmacokinetics, R13 (and, formerly, R7), is under development for the treatment of Alzheimer's disease.[10][11]

Tropoflavin has demonstrated therapeutic efficacy in animal models of a variety of central nervous system disorders,[7] including depression,[8] Alzheimer's disease,[12][13][14] cognitive deficits in schizophrenia,[15] Parkinson's disease,[5] Huntington's disease,[16] amyotrophic lateral sclerosis,[17] traumatic brain injury,[18] cerebral ischemia,[19][20] fragile X syndrome,[21] and Rett syndrome.[22] Tropoflavin also shows efficacy in animal models of age-associated cognitive impairment[23] and enhances memory consolidation and emotional learning in healthy rodents.[24][25] In addition, tropoflavin possesses powerful antioxidant activity independent of its actions on the TrkB receptor,[26] and protects against glutamate-induced excitotoxicity,[27] 6-hydroxydopamine-induced dopaminergic neurotoxicity,[28] and oxidative stress-induced genotoxicity.[29] It was also found to block methamphetamine-induced dopaminergic neurotoxicity, an effect which, in contrast to the preceding, was found to be TrkB-dependent.[30]

In 2017, evidence was published suggesting that tropoflavin and various other reported small-molecule TrkB agonists might not actually be direct agonists of the TrkB and might be mediating their observed effects by other means.[31][32]

Tropoflavin has been found to act as a weak aromatase inhibitor in vitro (Ki = 10 μM),[33] though there is evidence to suggest that this might not be the case in vivo.[5] In addition, it has been found to inhibit aldehyde dehydrogenase and estrogen sulfotransferase in vitro (Ki = 35 μM and 1–3 μM, respectively), though similarly to the case of aromatase, these activities have not yet been confirmed in vivo.[5] Unlike many other flavonoids, tropoflavin does not show any inhibitory activity on 17β-hydroxysteroid dehydrogenase.[34] Tropoflavin has also been observed to possess in vitro antiestrogenic effects at very high concentrations (Ki = 50 μM).[35][36]

A variety of close structural analogues of tropoflavin have also been found to act as TrkB agonists in vitro, including diosmetin (5,7,3'-trihydroxy-4'-methoxyflavone), norwogonin (5,7,8-trihydroxyflavone), eutropoflavin (4'-dimethylamino-7,8-dihydroxyflavone), 7,8,3'-trihydroxyflavone, 7,3'-dihydroxyflavone, 7,8,2'-trihydroxyflavone, 3,7,8,2'-tetrahydroxyflavone, and 3,7-dihydroxyflavone.[37] The highly hydroxylated analogue gossypetin (3,5,7,8,3',4'-hexahydroxyflavone), conversely, appears to be an antagonist of TrkB in vitro.[37]

Tropoflavin was also found to decrease mouse sleep in dark phase and reduce hypothalamus level of orexin A but not orexin B in mice.[38]

See also

References

  1. 1 2 US application 20150274692, Keqiang Ye, "7,8-Dihydoxyflavone and 7,8-substituted flavone derivatives, compositions, and methods related thereto", published 2015-10-01, assigned to Emory University
  2. Andero R, Ressler KJ (July 2012). "Fear extinction and BDNF: translating animal models of PTSD to the clinic". Genes, Brain, and Behavior. 11 (5): 503–12. doi:10.1111/j.1601-183X.2012.00801.x. PMC 3389160. PMID 22530815.
  3. Colombo PS, Flamini G, Christodoulou MS, Rodondi G, Vitalini S, Passarella D, Fico G (February 2014). "Farinose alpine Primula species: phytochemical and morphological investigations". Phytochemistry. 98: 151–9. doi:10.1016/j.phytochem.2013.11.018. hdl:2434/233766. PMID 24345641.
  4. Cell Press (2015). "Molecule found in tree leaves helps female mice combat weight gain; males unaffected". ScienceDaily. Retrieved 2015-03-19.
  5. 1 2 3 4 Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, Wilson WD, Xiao G, Blanchi B, Sun YE, Ye K (2010). "A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone". Proc. Natl. Acad. Sci. U.S.A. 107 (6): 2687–92. Bibcode:2010PNAS..107.2687J. doi:10.1073/pnas.0913572107. PMC 2823863. PMID 20133810.
  6. Liu X, Obianyo O, Chan CB, Huang J, Xue S, Yang JJ, Zeng F, Goodman M, Ye K (2014). "Biochemical and biophysical investigation of the brain-derived neurotrophic factor mimetic 7,8-dihydroxyflavone in the binding and activation of the TrkB receptor". J. Biol. Chem. 289 (40): 27571–84. doi:10.1074/jbc.M114.562561. PMC 4183797. PMID 25143381.
  7. 1 2 Zeng Y, Wang X, Wang Q, Liu S, Hu X, McClintock SM (2013). "Small molecules activating TrkB receptor for treating a variety of CNS disorders". CNS Neurol Disord Drug Targets. 12 (7): 1066–77. doi:10.2174/18715273113129990089. PMID 23844685.
  8. 1 2 Liu X, Chan CB, Jang SW, Pradoldej S, Huang J, He K, Phun LH, France S, Xiao G, Jia Y, Luo HR, Ye K (2010). "A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect". J. Med. Chem. 53 (23): 8274–86. doi:10.1021/jm101206p. PMC 3150605. PMID 21073191.
  9. Liu X, Chan CB, Qi Q, Xiao G, Luo HR, He X, Ye K (2012). "Optimization of a small tropomyosin-related kinase B (TrkB) agonist 7,8-dihydroxyflavone active in mouse models of depression". J. Med. Chem. 55 (19): 8524–37. doi:10.1021/jm301099x. PMC 3491656. PMID 22984948.
  10. Chen C, Wang Z, Zhang Z, Liu X, Kang SS, Zhang Y, Ye K (January 2018). "The prodrug of 7,8-dihydroxyflavone development and therapeutic efficacy for treating Alzheimer's disease". Proc. Natl. Acad. Sci. U.S.A. 115 (3): 578–583. doi:10.1073/pnas.1718683115. PMC 5777001. PMID 29295929.
  11. Liu C, Chan CB, Ye K (2016). "7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders". Translational Neurodegeneration. 5 (1): 2. doi:10.1186/s40035-015-0048-7. PMC 4702337. PMID 26740873.
  12. Castello NA, Nguyen MH, Tran JD, Cheng D, Green KN, LaFerla FM (2014). "7,8-Dihydroxyflavone, a small molecule TrkB agonist, improves spatial memory and increases thin spine density in a mouse model of Alzheimer disease-like neuronal loss". PLOS ONE. 9 (3): e91453. Bibcode:2014PLoSO...991453C. doi:10.1371/journal.pone.0091453. PMC 3948846. PMID 24614170.
  13. Chen C, Li XH, Zhang S, Tu Y, Wang YM, Sun HT (2014). "7,8-dihydroxyflavone ameliorates scopolamine-induced Alzheimer-like pathologic dysfunction". Rejuvenation Res. 17 (3): 249–54. doi:10.1089/rej.2013.1519. PMID 24325271.
  14. Zhang Z, Liu X, Schroeder JP, Chan CB, Song M, Yu SP, Weinshenker D, Ye K (2014). "7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer's disease". Neuropsychopharmacology. 39 (3): 638–50. doi:10.1038/npp.2013.243. PMC 3895241. PMID 24022672.
  15. Yang YJ, Li YK, Wang W, Wan JG, Yu B, Wang MZ, Hu B (2014). "Small-molecule TrkB agonist 7,8-dihydroxyflavone reverses cognitive and synaptic plasticity deficits in a rat model of schizophrenia". Pharmacol. Biochem. Behav. 122: 30–6. doi:10.1016/j.pbb.2014.03.013. PMID 24662915. S2CID 12198275.
  16. Jiang M, Peng Q, Liu X, Jin J, Hou Z, Zhang J, Mori S, Ross CA, Ye K, Duan W (2013). "Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington's disease". Hum. Mol. Genet. 22 (12): 2462–70. doi:10.1093/hmg/ddt098. PMC 3658168. PMID 23446639.
  17. Korkmaz OT, Aytan N, Carreras I, Choi JK, Kowall NW, Jenkins BG, Dedeoglu A (2014). "7,8-Dihydroxyflavone improves motor performance and enhances lower motor neuronal survival in a mouse model of amyotrophic lateral sclerosis". Neurosci. Lett. 566: 286–91. doi:10.1016/j.neulet.2014.02.058. PMC 5906793. PMID 24637017.
  18. Wu CH, Hung TH, Chen CC, Ke CH, Lee CY, Wang PY, Chen SF (2014). "Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling". PLOS ONE. 9 (11): e113397. Bibcode:2014PLoSO...9k3397W. doi:10.1371/journal.pone.0113397. PMC 4240709. PMID 25415296.
  19. Wang B, Wu N, Liang F, Zhang S, Ni W, Cao Y, Xia D, Xi H (2014). "7,8-dihydroxyflavone, a small-molecule tropomyosin-related kinase B (TrkB) agonist, attenuates cerebral ischemia and reperfusion injury in rats". J. Mol. Histol. 45 (2): 129–40. doi:10.1007/s10735-013-9539-y. PMID 24045895. S2CID 10671354.
  20. Uluc K, Kendigelen P, Fidan E, Zhang L, Chanana V, Kintner D, Akture E, Song C, Ye K, Sun D, Ferrazzano P, Cengiz P (2013). "TrkB receptor agonist 7, 8 dihydroxyflavone triggers profound gender- dependent neuroprotection in mice after perinatal hypoxia and ischemia". CNS Neurol Disord Drug Targets. 12 (3): 360–70. doi:10.2174/18715273113129990061. PMC 3674109. PMID 23469848.
  21. Tian M, Zeng Y, Hu Y, Yuan X, Liu S, Li J, Lu P, Sun Y, Gao L, Fu D, Li Y, Wang S, McClintock SM (2015). "7, 8-Dihydroxyflavone induces synapse expression of AMPA GluA1 and ameliorates cognitive and spine abnormalities in a mouse model of fragile X syndrome". Neuropharmacology. 89: 43–53. doi:10.1016/j.neuropharm.2014.09.006. PMID 25229717. S2CID 38120522.
  22. Johnson RA, Lam M, Punzo AM, Li H, Lin BR, Ye K, Mitchell GS, Chang Q (2012). "7,8-dihydroxyflavone exhibits therapeutic efficacy in a mouse model of Rett syndrome". J. Appl. Physiol. 112 (5): 704–10. doi:10.1152/japplphysiol.01361.2011. PMC 3643819. PMID 22194327.
  23. Zeng Y, Lv F, Li L, Yu H, Dong M, Fu Q (2012). "7,8-dihydroxyflavone rescues spatial memory and synaptic plasticity in cognitively impaired aged rats". J. Neurochem. 122 (4): 800–11. doi:10.1111/j.1471-4159.2012.07830.x. PMID 22694088.
  24. Bollen E, Vanmierlo T, Akkerman S, Wouters C, Steinbusch HM, Prickaerts J (2013). "7,8-Dihydroxyflavone improves memory consolidation processes in rats and mice". Behav. Brain Res. 257: 8–12. doi:10.1016/j.bbr.2013.09.029. PMID 24070857. S2CID 24088558.
  25. Andero R, Heldt SA, Ye K, Liu X, Armario A, Ressler KJ (2011). "Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning". Am J Psychiatry. 168 (2): 163–72. doi:10.1176/appi.ajp.2010.10030326. PMC 3770732. PMID 21123312.
  26. Foti M, Piattelli M, Baratta MT, Ruberto G (1996). "Flavonoids, Coumarins, and Cinnamic Acids as Antioxidants in a Micellar System. Structure−Activity Relationship†". Journal of Agricultural and Food Chemistry. 44 (2): 497–501. doi:10.1021/jf950378u. ISSN 0021-8561.
  27. Chen J, Chua KW, Chua CC, Yu H, Pei A, Chua BH, Hamdy RC, Xu X, Liu CF (2011). "Antioxidant activity of 7,8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity". Neurosci. Lett. 499 (3): 181–5. doi:10.1016/j.neulet.2011.05.054. PMID 21651962. S2CID 36661121.
  28. Han X, Zhu S, Wang B, Chen L, Li R, Yao W, Qu Z (2014). "Antioxidant action of 7,8-dihydroxyflavone protects PC12 cells against 6-hydroxydopamine-induced cytotoxicity". Neurochem. Int. 64: 18–23. doi:10.1016/j.neuint.2013.10.018. PMID 24220540. S2CID 24439864.
  29. Zhang R, Kang KA, Piao MJ, Ko DO, Wang ZH, Chang WY, You HJ, Lee IK, Kim BJ, Kang SS, Hyun JW (2009). "Preventive effect of 7,8-dihydroxyflavone against oxidative stress induced genotoxicity". Biol. Pharm. Bull. 32 (2): 166–71. doi:10.1248/bpb.32.166. PMID 19182370.
  30. Ren Q, Zhang JC, Ma M, Fujita Y, Wu J, Hashimoto K (2014). "7,8-Dihydroxyflavone, a TrkB agonist, attenuates behavioral abnormalities and neurotoxicity in mice after administration of methamphetamine". Psychopharmacology. 231 (1): 159–66. doi:10.1007/s00213-013-3221-7. PMID 23934209. S2CID 17118439.
  31. Boltaev U, Meyer Y, Tolibzoda F, Jacques T, Gassaway M, Xu Q, Wagner F, Zhang YL, Palmer M, Holson E, Sames D (2017). "Multiplex quantitative assays indicate a need for reevaluating reported small-molecule TrkB agonists". Sci Signal. 10 (493): eaal1670. doi:10.1126/scisignal.aal1670. PMID 28831019.
  32. Todd D, Gowers I, Dowler SJ, Wall MD, McAllister G, Fischer DF, Dijkstra S, Fratantoni SA, van de Bospoort R, Veenman-Koepke J, Flynn G, Arjomand J, Dominguez C, Munoz-Sanjuan I, Wityak J, Bard JA (2014). "A monoclonal antibody TrkB receptor agonist as a potential therapeutic for Huntington's disease". PLOS ONE. 9 (2): e87923. Bibcode:2014PLoSO...987923T. doi:10.1371/journal.pone.0087923. PMC 3913682. PMID 24503862.
  33. Kao YC, Zhou C, Sherman M, Laughton CA, Chen S (1998). "Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study". Environ. Health Perspect. 106 (2): 85–92. doi:10.1289/ehp.9810685. PMC 1533021. PMID 9435150.
  34. Le Bail JC, Laroche T, Marre-Fournier F, Habrioux G (November 1998). "Aromatase and 17beta-hydroxysteroid dehydrogenase inhibition by flavonoids". Cancer Letters. 133 (1): 101–6. doi:10.1016/S0304-3835(98)00211-0. PMID 9929167.
  35. Le Bail JC, Varnat F, Nicolas JC, Habrioux G (1998). "Estrogenic and antiproliferative activities on MCF-7 human breast cancer cells by flavonoids". Cancer Lett. 130 (1–2): 209–16. doi:10.1016/S0304-3835(98)00141-4. PMID 9751276.
  36. Pouget C, Lauthier F, Simon A, Fagnere C, Basly JP, Delage C, Chulia AJ (2001). "Flavonoids: structural requirements for antiproliferative activity on breast cancer cells". Bioorg. Med. Chem. Lett. 11 (24): 3095–7. doi:10.1016/S0960-894X(01)00617-5. PMID 11720850.
  37. 1 2 Liu X, Chan CB, Jang SW, Pradoldej S, Huang J, He K, et al. (December 2010). "A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect". Journal of Medicinal Chemistry. 53 (23): 8274–86. doi:10.1021/jm101206p. PMC 3150605. PMID 21073191.
  38. Feng P, Akladious AA, Hu Y, Raslan Y, Feng J, Smith PJ (October 2015). "7,8-Dihydroxyflavone reduces sleep during dark phase and suppresses orexin A but not orexin B in mice". Journal of Psychiatric Research. 69: 110–9. doi:10.1016/j.jpsychires.2015.08.002. PMID 26343602.
This article is issued from Offline. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.