300 (number)
300 (three hundred) is the natural number following 299 and preceding 301.
| ||||
---|---|---|---|---|
Cardinal | three hundred | |||
Ordinal | 300th (three hundredth) | |||
Factorization | 22 × 3 × 52 | |||
Greek numeral | Τ´ | |||
Roman numeral | CCC | |||
Binary | 1001011002 | |||
Ternary | 1020103 | |||
Senary | 12206 | |||
Octal | 4548 | |||
Duodecimal | 21012 | |||
Hexadecimal | 12C16 | |||
Hebrew | ש (Shin) |
Mathematical properties
The number 300 is a triangular number and the sum of a pair of twin primes (149 + 151), as well as the sum of ten consecutive primes (13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47). It is palindromic in 3 consecutive bases: 30010 = 6067 = 4548 = 3639, and also in base 13. Factorization is 22 × 3 × 52. 30064 + 1 is prime
Integers from 301 to 399
301
301 = 7 × 43 = . 301 is the sum of three consecutive primes (97 + 101 + 103), happy number in base 10,[1] lazy caterer number (sequence A000124 in the OEIS).
302
302 = 2 × 151. 302 is a nontotient,[2] a happy number,[1] the number of partitions of 40 into prime parts[3]
303
303 = 3 × 101. 303 is a palindromic semiprime. The number of compositions of 10 which cannot be viewed as stacks is 303.[4]
304
304 = 24 × 19. 304 is the sum of six consecutive primes (41 + 43 + 47 + 53 + 59 + 61), sum of eight consecutive primes (23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), primitive semiperfect number,[5] untouchable number,[6] nontotient.[2] 304 is the smallest number such that no square has a set of digits complementary to the digits of the square of 304: The square of 304 is 92416, while no square exists using the set of the complementary digits 03578.
305
305 = 5 × 61. 305 is the convolution of the first 7 primes with themselves.[7]
306
306 = 2 × 32 × 17. 306 is the sum of four consecutive primes (71 + 73 + 79 + 83), pronic number,[8] and an untouchable number.[6]
307
307 is a prime number, Chen prime,[9] number of one-sided octiamonds[10]
308
308 = 22 × 7 × 11. 308 is a nontotient,[2] totient sum of the first 31 integers, heptagonal pyramidal number,[11] and the sum of two consecutive primes (151 + 157).
309
309 = 3 × 103, Blum integer, number of primes <= 211.[12]
310
310 = 2 × 5 × 31. 310 is a sphenic number,[13] noncototient,[14] number of Dyck 11-paths with strictly increasing peaks.[15]
311
312
312 = 23 × 3 × 13, idoneal number.
313
314
314 = 2 × 157. 314 is a nontotient,[2] smallest composite number in Somos-4 sequence.[16]
315
315 = 32 × 5 × 7 = rencontres number, highly composite odd number, having 12 divisors.[17]
316
316 = 22 × 79. 316 is a centered triangular number[18] and a centered heptagonal number[19]
317
317 is a prime number, Eisenstein prime with no imaginary part, Chen prime,[9] and a strictly non-palindromic number.
317 is the exponent (and number of ones) in the fourth base-10 repunit prime.[20]
318
319
319 = 11 × 29. 319 is the sum of three consecutive primes (103 + 107 + 109), Smith number,[21] cannot be represented as the sum of fewer than 19 fourth powers, happy number in base 10[1]
320
320 = 26 × 5 = (25) × (2 × 5). 320 is a Leyland number,[22] and maximum determinant of a 10 by 10 matrix of zeros and ones.
321
321 = 3 × 107, a Delannoy number[23]
322
322 = 2 × 7 × 23. 322 is a sphenic,[13] nontotient, untouchable,[6] and a Lucas number.[24]
323
323 = 17 × 19. 323 is the sum of nine consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), the sum of the 13 consecutive primes (5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47), Motzkin number.[25] A Lucas and Fibonacci pseudoprime. See 323 (disambiguation)
324
324 = 22 × 34 = 182. 324 is the sum of four consecutive primes (73 + 79 + 83 + 89), totient sum of the first 32 integers, a square number,[26] and an untouchable number.[6]
325
325 = 52 × 13. 325 is a triangular number, hexagonal number,[27] nonagonal number,[28] centered nonagonal number.[29] 325 is the smallest number to be the sum of two squares in 3 different ways: 12 + 182, 62 + 172 and 102 + 152. 325 is also the smallest (and only known) 3-hyperperfect number.
326
326 = 2 × 163. 326 is a nontotient, noncototient,[14] and an untouchable number.[6] 326 is the sum of the 14 consecutive primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47), lazy caterer number (sequence A000124 in the OEIS).
327
327 = 3 × 109. 327 is a perfect totient number,[30] number of compositions of 10 whose run-lengths are either weakly increasing or weakly decreasing[31]
328
328 = 23 × 41. 328 is a refactorable number,[32] and it is the sum of the first fifteen primes (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47).
329
329 = 7 × 47. 329 is the sum of three consecutive primes (107 + 109 + 113), and a highly cototient number.[33]
330
330 = 2 × 3 × 5 × 11. 330 is sum of six consecutive primes (43 + 47 + 53 + 59 + 61 + 67), pentatope number (and hence a binomial coefficient ), a pentagonal number,[34] divisible by the number of primes below it, and a sparsely totient number.[35]
331
331 is a prime number, super-prime, cuban prime,[36] sum of five consecutive primes (59 + 61 + 67 + 71 + 73), centered pentagonal number,[37] centered hexagonal number,[38] and Mertens function returns 0.[39]
332
332 = 22 × 83, Mertens function returns 0.[39]
333
333 = 32 × 37, Mertens function returns 0,[39]
334
334 = 2 × 167, nontotient.[40]
335
335 = 5 × 67, divisible by the number of primes below it, number of Lyndon words of length 12.
337
337, prime number, emirp, permutable prime with 373 and 733, Chen prime,[9] star number
338
338 = 2 × 132, nontotient, number of square (0,1)-matrices without zero rows and with exactly 4 entries equal to 1.[41]
339
339 = 3 × 113, Ulam number[42]
340
340 = 22 × 5 × 17, sum of eight consecutive primes (29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), sum of ten consecutive primes (17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), sum of the first four powers of 4 (41 + 42 + 43 + 44), divisible by the number of primes below it, nontotient, noncototient.[14] Number of regions formed by drawing the line segments connecting any two of the 12 perimeter points of a 3 times 3 grid of squares (sequence A331452 in the OEIS) and (sequence A255011 in the OEIS).
341
341 = 11 × 31, sum of seven consecutive primes (37 + 41 + 43 + 47 + 53 + 59 + 61), octagonal number,[43] centered cube number,[44] super-Poulet number. 341 is the smallest Fermat pseudoprime; it is the least composite odd modulus m greater than the base b, that satisfies the Fermat property "bm−1 − 1 is divisible by m", for bases up to 128 of b = 2, 15, 60, 63, 78, and 108.
343
343 = 73, the first nice Friedman number that is composite since 343 = (3 + 4)3. It is the only known example of x2+x+1 = y3, in this case, x=18, y=7. It is z3 in a triplet (x,y,z) such that x5 + y2 = z3.
344
344 = 23 × 43, octahedral number,[45] noncototient,[14] totient sum of the first 33 integers, refactorable number.[32]
345
345 = 3 × 5 × 23, sphenic number,[13] idoneal number
347
347 is a prime number, emirp, safe prime,[46] Eisenstein prime with no imaginary part, Chen prime,[9] Friedman prime since 347 = 73 + 4, and a strictly non-palindromic number.
348
348 = 22 × 3 × 29, sum of four consecutive primes (79 + 83 + 89 + 97), refactorable number.[32]
349
349, prime number, sum of three consecutive primes (109 + 113 + 127), 5349 - 4349 is a prime number.[47]
350
350 = 2 × 52 × 7 = , primitive semiperfect number,[5] divisible by the number of primes below it, nontotient, a truncated icosahedron of frequency 6 has 350 hexagonal faces and 12 pentagonal faces.
351
351 = 33 × 13, triangular number, sum of five consecutive primes (61 + 67 + 71 + 73 + 79), member of Padovan sequence[48] and number of compositions of 15 into distinct parts.[49]
352
352 = 25 × 11, the number of n-Queens Problem solutions for n = 9. It is the sum of two consecutive primes (173 + 179), lazy caterer number (sequence A000124 in the OEIS).
353
354
354 = 2 × 3 × 59 = 14 + 24 + 34 + 44,[50][51] sphenic number,[13] nontotient, also SMTP code meaning start of mail input. It is also sum of absolute value of the coefficients of Conway's polynomial.
355
355 = 5 × 71, Smith number,[21] Mertens function returns 0,[39] divisible by the number of primes below it.
The numerator of the best simplified rational approximation of pi having a denominator of four digits or fewer. This fraction (355/113) is known as Milü and provides an extremely accurate approximation for pi.
356
356 = 22 × 89, Mertens function returns 0.[39]
357
357 = 3 × 7 × 17, sphenic number.[13]
358
358 = 2 × 179, sum of six consecutive primes (47 + 53 + 59 + 61 + 67 + 71), Mertens function returns 0,[39] number of ways to partition {1,2,3,4,5} and then partition each cell (block) into subcells.[52]
359
360
361
361 = 192, centered triangular number,[18] centered octagonal number, centered decagonal number,[53] member of the Mian–Chowla sequence;[54] also the number of positions on a standard 19 x 19 Go board.
362
362 = 2 × 181 = σ2(19): sum of squares of divisors of 19,[55] Mertens function returns 0,[39] nontotient, noncototient.[14]
363
364
364 = 22 × 7 × 13, tetrahedral number,[56] sum of twelve consecutive primes (11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), Mertens function returns 0,[39] nontotient. It is a repdigit in base 3 (111111), base 9 (444), base 25 (EE), base 27 (DD), base 51 (77) and base 90 (44), the sum of six consecutive powers of 3 (1 + 3 + 9 + 27 + 81 + 243), and because it is the twelfth non-zero tetrahedral number.[57]
365
366
366 = 2 × 3 × 61, sphenic number,[13] Mertens function returns 0,[39] noncototient,[14] number of complete partitions of 20,[58] 26-gonal and 123-gonal.
367
367 is a prime number, Perrin number,[59] happy number, prime index prime and a strictly non-palindromic number.
368
368 = 24 × 23. It is also a Leyland number.[22]
369
370
370 = 2 × 5 × 37, sphenic number,[13] sum of four consecutive primes (83 + 89 + 97 + 101), nontotient, with 369 part of a Ruth–Aaron pair with only distinct prime factors counted, Base 10 Armstrong number since 33 + 73 + 03 = 370.
371
371 = 7 × 53, sum of three consecutive primes (113 + 127 + 131), sum of seven consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67), sum of the primes from its least to its greatest prime factor (sequence A055233 in the OEIS), the next such composite number is 2935561623745, Armstrong number since 33 + 73 + 13 = 371.
372
372 = 22 × 3 × 31, sum of eight consecutive primes (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61), noncototient,[14] untouchable number,[6] refactorable number.[32]
373
373, prime number, balanced prime,[60] two-sided prime, sum of five consecutive primes (67 + 71 + 73 + 79 + 83), permutable prime with 337 and 733, palindromic prime in 3 consecutive bases: 5658 = 4549 = 37310 and also in base 4: 113114.
374
374 = 2 × 11 × 17, sphenic number,[13] nontotient, 3744 + 1 is prime.[61]
375
375 = 3 × 53, number of regions in regular 11-gon with all diagonals drawn.[62]
376
376 = 23 × 47, pentagonal number,[34] 1-automorphic number,[63] nontotient, refactorable number.[32] There is a math puzzle in which when 376 is squared, 376 is also the last three digits, as 376 * 376 = 141376 [64]
377
377 = 13 × 29, Fibonacci number, a centered octahedral number,[65] a Lucas and Fibonacci pseudoprime, the sum of the squares of the first six primes.
378
378 = 2 × 33 × 7, triangular number, cake number, hexagonal number,[27] Smith number.[21]
379
379 is a prime number, Chen prime,[9] lazy caterer number (sequence A000124 in the OEIS) and a happy number in base 10. It is the sum of the 15 consecutive primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53). 379! - 1 is prime.
380
380 = 22 × 5 × 19, pronic number,[8] Number of regions into which a figure made up of a row of 6 adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles OEIS: A306302 and OEIS: A331452.
381
381 = 3 × 127, palindromic in base 2 and base 8.
It is the sum of the first 16 prime numbers (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53).
382
382 = 2 × 191, sum of ten consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), Smith number.[21]
383
383, prime number, safe prime,[46] Woodall prime,[66] Thabit number, Eisenstein prime with no imaginary part, palindromic prime. It is also the first number where the sum of a prime and the reversal of the prime is also a prime.[67] 4383 - 3383 is prime.
384
385
385 = 5 × 7 × 11, sphenic number,[13] square pyramidal number,[68] the number of integer partitions of 18.
385 = 102 + 92 + 82 + 72 + 62 + 52 + 42 + 32 + 22 + 12
386
386 = 2 × 193, nontotient, noncototient,[14] centered heptagonal number,[19] number of surface points on a cube with edge-length 9.[69]
387
387 = 32 × 43, number of graphical partitions of 22.[70]
388
388 = 22 × 97 = solution to postage stamp problem with 6 stamps and 6 denominations,[71] number of uniform rooted trees with 10 nodes.[72]
389
389, prime number, emirp, Eisenstein prime with no imaginary part, Chen prime,[9] highly cototient number,[33] strictly non-palindromic number. Smallest conductor of a rank 2 Elliptic curve.
390
390 = 2 × 3 × 5 × 13, sum of four consecutive primes (89 + 97 + 101 + 103), nontotient,
- is prime[73]
391
391 = 17 × 23, Smith number,[21] centered pentagonal number.[37]
392
392 = 23 × 72, Achilles number.
393
393 = 3 × 131, Blum integer, Mertens function returns 0.[39]
394
394 = 2 × 197 = S5 a Schröder number,[74] nontotient, noncototient.[14]
395
395 = 5 × 79, sum of three consecutive primes (127 + 131 + 137), sum of five consecutive primes (71 + 73 + 79 + 83 + 89), number of (unordered, unlabeled) rooted trimmed trees with 11 nodes.[75]
396
396 = 22 × 32 × 11, sum of twin primes (197 + 199), totient sum of the first 36 integers, refactorable number,[32] Harshad number, digit-reassembly number.
399
399 = 3 × 7 × 19, sphenic number,[13] smallest Lucas–Carmichael number, Leyland number of the second kind. 399! + 1 is prime.
References
- Sloane, N. J. A. (ed.). "Sequence A007770 (Happy numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-21.
- Sloane, N. J. A. (ed.). "Sequence A005277 (Nontotients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-21.
- Sloane, N. J. A. (ed.). "Sequence A000607 (Number of partitions of n into prime parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A115981 (The number of compositions of n which cannot be viewed as stacks)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A006036 (Primitive pseudoperfect numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-21.
- Sloane, N. J. A. (ed.). "Sequence A005114 (Untouchable numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-21.
- Sloane, N. J. A. (ed.). "Sequence A014342 (Convolution of primes with themselves)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A002378 (Oblong numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-21.
- Sloane, N. J. A. (ed.). "Sequence A109611 (Chen primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-21.
- Sloane, N. J. A. (ed.). "Sequence A006534". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-10.
- Sloane, N. J. A. (ed.). "Sequence A002413 (Heptagonal pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A007053 (Number of primes <= 2^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
- Sloane, N. J. A. (ed.). "Sequence A007304 (Sphenic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-21.
- Sloane, N. J. A. (ed.). "Sequence A005278 (Noncototients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-21.
- Sloane, N. J. A. (ed.). "Sequence A008930 (Number of compositions (p_1, p_2, p_3, ...) of n with 1 <= p_i <= i for all i)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A006720 (Somos-4 sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- "A053624 - OEIS". oeis.org.
- Sloane, N. J. A. (ed.). "Sequence A005448 (Centered triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-21.
- Sloane, N. J. A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-21.
- Guy, Richard; Unsolved Problems in Number Theory, p. 7 ISBN 1475717385
- Sloane, N. J. A. (ed.). "Sequence A006753 (Smith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-21.
- Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A001850 (Central Delannoy numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-21.
- Sloane, N. J. A. (ed.). "Sequence A000032 (Lucas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-21.
- Sloane, N. J. A. (ed.). "Sequence A001006 (Motzkin numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- "A000290 - OEIS". oeis.org. Retrieved 2022-10-23.
- Sloane, N. J. A. (ed.). "Sequence A000384 (Hexagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A001106 (9-gonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A060544 (Centered 9-gonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A082897 (Perfect totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
- Sloane, N. J. A. (ed.). "Sequence A033950 (Refactorable numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A000326 (Pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A036913 (Sparsely totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A005891 (Centered pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A003215 (Hex numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A028442 (Numbers n such that Mertens' function is zero)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A003052 (Self numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-21.
- Sloane, N. J. A. (ed.). "Sequence A122400 (Number of square (0,1)-matrices without zero rows and with exactly n entries equal to 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A002858 (Ulam numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A000567 (Octagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A005898 (Centered cube numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A005900 (Octahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A005385 (Safe primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A059802 (Numbers k such that 5^k - 4^k is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A000931 (Padovan sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A032020 (Number of compositions (ordered partitions) of n into distinct parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-24.
- Sloane, N. J. A. (ed.). "Sequence A000538 (Sum of fourth powers: 0^4 + 1^4 + ... + n^4)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A031971 (a(n) = Sum_{k=1..n} k^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A062786 (Centered 10-gonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A005282 (Mian-Chowla sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A001157 (a(n) = sigma_2(n): sum of squares of divisors of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral (or triangular pyramidal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A126796 (Number of complete partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A001608 (Perrin sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A006562 (Balanced primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A000068 (Numbers k such that k^4 + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A007678 (Number of regions in regular n-gon with all diagonals drawn)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- https://www.mathsisfun.com/puzzles/algebra-cow-solution.html
- Sloane, N. J. A. (ed.). "Sequence A001845 (Centered octahedral numbers (crystal ball sequence for cubic lattice))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
- Sloane, N. J. A. (ed.). "Sequence A050918 (Woodall primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A072385 (Primes which can be represented as the sum of a prime and its reverse)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-06-02.
- Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A005897 (a(n) = 6*n^2 + 2 for n > 0, a(0)=1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A000569 (Number of graphical partitions of 2n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A084192 (Array read by antidiagonals: T(n,k) = solution to postage stamp problem with n stamps and k denominations (n >= 1, k >= 1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A317712 (Number of uniform rooted trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A162862 (Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
- Sloane, N. J. A. (ed.). "Sequence A006318 (Large Schröder numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-22.
- Sloane, N. J. A. (ed.). "Sequence A002955 (Number of (unordered, unlabeled) rooted trimmed trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.