9000 (number)

9000 (nine thousand) is the natural number following 8999 and preceding 9001.

8999 9000 9001
Cardinalnine thousand
Ordinal9000th
(nine thousandth)
Factorization23 × 32 × 53
Greek numeral,Θ´
Roman numeralMX, or IX
Unicode symbol(s)MX, mx, IX, ix
Binary100011001010002
Ternary1101001003
Senary1054006
Octal214508
Duodecimal526012
Hexadecimal232816

Selected numbers in the range 9001–9999

9001 to 9099

9100 to 9199

9200 to 9299

9300 to 9399

9400 to 9499

9500 to 9599

  • 9511 - prime number
  • 9521 - prime number
  • 9533 - prime number
  • 9539 – Sophie Germain prime, super-prime
  • 9551 – first prime followed by as many as 35 consecutive composite numbers
  • 9587 – safe prime, follows 35 consecutive composite numbers
  • 9591 – triangular number
  • 9592 - amount of prime numbers under 100,000


9600 to 9699

  • 9601Proth prime
  • 9604 = 982
  • 9619super-prime
  • 9629 – Sophie Germain prime
  • 9647 – centered heptagonal number
  • 9661 – super-prime, sum of nine consecutive primes (1049 + 1051 + 1061 + 1063 + 1069 + 1087 + 1091 + 1093 + 1097)
  • 9689 – Sophie Germain prime
  • 9699 – nonagonal number

9700 to 9799

  • 9721 – prime of the form 2p-1
  • 9730 – triangular number
  • 9739super-prime
  • 9743 – safe prime
  • 9791 – Sophie Germain prime

9800 to 9899

9900 to 9999

  • 9901 – unique prime, sum of seven consecutive primes (1381 + 1399 + 1409 + 1423 + 1427 + 1429 + 1433)[3]
  • 9905 – number of compositions of 16 whose run-lengths are either weakly increasing or weakly decreasing[12]
  • 9923super-prime, probably smallest certainly executable prime number on x86 MS-DOS[13]
  • 9949 – sum of nine consecutive primes (1087 + 1091 + 1093 + 1097 + 1103 + 1109 + 1117 + 1123 + 1129)
  • 9973 – super-prime
  • 9999Kaprekar number, repdigit

Prime numbers

There are 112 prime numbers between 9000 and 10000:[14][15]

9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973

References

  1. "Sloane's A005898 : Centered cube numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  2. "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  3. "Sloane's A040017 : Unique period primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  4. "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  5. "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  6. Brunner, Amy; Caldwell, Chris K.; Krywaruczenko, Daniel and Lownsdale, Chris. "GENERALIZED SIERPIŃSKI NUMBERS BASE b" (PDF). University of Tennessee at Martin.{{cite web}}: CS1 maint: multiple names: authors list (link)
  7. "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  8. "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  9. "Sloane's A006037 : Weird numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  10. "Sloane's A005479 : Prime Lucas numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  11. "Sloane's A000330 : Square pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  12. Sloane, N. J. A. (ed.). "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
  13. An Executable Prime Number?, archived from the original on 2010-02-10
  14. Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  15. Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.