Truncated tetraoctagonal tiling

In geometry, the truncated tetraoctagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one octagon, and one hexakaidecagon on each vertex. It has Schläfli symbol of tr{8,4}.

Truncated tetraoctagonal tiling
Truncated tetraoctagonal tiling
Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration4.8.16
Schläfli symboltr{8,4} or
Wythoff symbol2 8 4 |
Coxeter diagram or
Symmetry group[8,4], (*842)
DualOrder-4-8 kisrhombille tiling
PropertiesVertex-transitive

Dual tiling

The dual tiling is called an order-4-8 kisrhombille tiling, made as a complete bisection of the order-4 octagonal tiling, here with triangles are shown with alternating colors. This tiling represents the fundamental triangular domains of [8,4] (*842) symmetry.

Symmetry

Truncated tetraoctagonal tiling with *842, , mirror lines

There are 15 subgroups constructed from [8,4] by mirror removal and alternation. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. The subgroup index-8 group, [1+,8,1+,4,1+] (4242) is the commutator subgroup of [8,4].

A larger subgroup is constructed as [8,4*], index 8, as [8,4+], (4*4) with gyration points removed, becomes (*4444) or (*44), and another [8*,4], index 16 as [8+,4], (8*2) with gyration points removed as (*22222222) or (*28). And their direct subgroups [8,4*]+, [8*,4]+, subgroup indices 16 and 32 respectively, can be given in orbifold notation as (4444) and (22222222).

From a Wythoff construction there are fourteen hyperbolic uniform tilings that can be based from the regular order-4 octagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 7 forms with full [8,4] symmetry, and 7 with subsymmetry.

Uniform octagonal/square tilings
[8,4], (*842)
(with [8,8] (*882), [(4,4,4)] (*444) , [,4,] (*4222) index 2 subsymmetries)
(And [(,4,,4)] (*4242) index 4 subsymmetry)

=

=
=

=

=
=

=


=


=
=



=
{8,4} t{8,4}
r{8,4} 2t{8,4}=t{4,8} 2r{8,4}={4,8} rr{8,4} tr{8,4}
Uniform duals
V84 V4.16.16 V(4.8)2 V8.8.8 V48 V4.4.4.8 V4.8.16
Alternations
[1+,8,4]
(*444)
[8+,4]
(8*2)
[8,1+,4]
(*4222)
[8,4+]
(4*4)
[8,4,1+]
(*882)
[(8,4,2+)]
(2*42)
[8,4]+
(842)

=

=

=

=

=

=
h{8,4} s{8,4} hr{8,4} s{4,8} h{4,8} hrr{8,4} sr{8,4}
Alternation duals
V(4.4)4 V3.(3.8)2 V(4.4.4)2 V(3.4)3 V88 V4.44 V3.3.4.3.8
*n42 symmetry mutation of omnitruncated tilings: 4.8.2n
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolic Paracomp.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
Omnitruncated
figure

4.8.4

4.8.6

4.8.8

4.8.10

4.8.12

4.8.14

4.8.16

4.8.
Omnitruncated
duals

V4.8.4

V4.8.6

V4.8.8

V4.8.10

V4.8.12

V4.8.14

V4.8.16

V4.8.
*nn2 symmetry mutations of omnitruncated tilings: 4.2n.2n
Symmetry
*nn2
[n,n]
Spherical Euclidean Compact hyperbolic Paracomp.
*222
[2,2]
*332
[3,3]
*442
[4,4]
*552
[5,5]
*662
[6,6]
*772
[7,7]
*882
[8,8]...
*2
[,]
Figure
Config. 4.4.4 4.6.6 4.8.8 4.10.10 4.12.12 4.14.14 4.16.16 4..
Dual
Config. V4.4.4 V4.6.6 V4.8.8 V4.10.10 V4.12.12 V4.14.14 V4.16.16 V4..

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.