Apeirogonal prism

In geometry, an apeirogonal prism or infinite prism is the arithmetic limit of the family of prisms; it can be considered an infinite polyhedron or a tiling of the plane.[1]

Apeirogonal prism
Apeirogonal prism
TypeSemiregular tiling
Vertex configuration
4.4.
Schläfli symbolt{2,}
Wythoff symbol2 | 2
Coxeter diagram
Symmetry[,2], (*22)
Rotation symmetry[,2]+, (22)
Bowers acronymAzip
DualApeirogonal bipyramid
PropertiesVertex-transitive

Thorold Gosset called it a 2-dimensional semi-check, like a single row of a checkerboard.

If the sides are squares, it is a uniform tiling. If colored with two sets of alternating squares it is still uniform.

The apeirogonal tiling is the arithmetic limit of the family of prisms t{2, p} or p.4.4, as p tends to infinity, thereby turning the prism into a Euclidean tiling.

An alternation operation can create an apeirogonal antiprism composed of three triangles and one apeirogon at each vertex.

Similarly to the uniform polyhedra and the uniform tilings, eight uniform tilings may be based from the regular apeirogonal tiling. The rectified and cantellated forms are duplicated, and as two times infinity is also infinity, the truncated and omnitruncated forms are also duplicated, therefore reducing the number of unique forms to four: the apeirogonal tiling, the apeirogonal hosohedron, the apeirogonal prism, and the apeirogonal antiprism.

Order-2 regular or uniform apeirogonal tilings
(∞ 2 2) Parent Truncated Rectified Bitruncated Birectified
(dual)
Cantellated Omnitruncated
(Cantitruncated)
Snub
Wythoff symbol 2 | ∞ 2 2 2 | 2 | ∞ 2 2 ∞ | 2 | 2 2 ∞ 2 | 2 ∞ 2 2 | | ∞ 2 2
Schläfli symbol {∞,2} t{∞,2} r{∞,2} t{2,∞} {2,∞} rr{∞,2} tr{∞,2} sr{∞,2}
Coxeter-Dynkin diagram
Vertex config. ∞.∞ ∞.∞ ∞.∞ 4.4.∞ 2 4.4.∞ 4.4.∞ 3.3.3.∞
Tiling image
Tiling name Apeirogonal dihedron Apeirogonal dihedron Apeirogonal dihedron Apeirogonal prism Apeirogonal hosohedron Apeirogonal prism Apeirogonal prism Apeirogonal antiprism

Notes

  1. Conway (2008), p.263

References

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • Grünbaum, Branko; Shephard, G. C. (1987). Tilings and Patterns. W. H. Freeman and Company. ISBN 0-7167-1193-1.
  • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.