Solar eclipse of December 17, 2066

A total solar eclipse will occur on December 17, 2066. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

Solar eclipse of December 17, 2066
Map
Type of eclipse
NatureTotal
Gamma−0.4043
Magnitude1.0416
Maximum eclipse
Duration194 sec (3 m 14 s)
Coordinates47.4°S 175.8°E / -47.4; 175.8
Max. width of band152 km (94 mi)
Times (UTC)
Greatest eclipse0:23:40
References
Saros133 (48 of 72)
Catalog # (SE5000)9657

This total eclipse follows a similar path to the eclipse on December 25–26, 2038.

Solar eclipses 2065–2069

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Solar eclipse series sets from 2065–2069
Descending node   Ascending node
118July 3, 2065

Partial
123December 27, 2065

Partial
128June 22, 2066

Annular
133December 17, 2066

Total
138June 11, 2067

Annular
143December 6, 2067

Hybrid
148May 31, 2068

Total
153November 24, 2068

Partial
158May 20, 2069

Partial

Tzolkinex

Saros 133

Solar Saros 133, repeating every 18 years, 11 days, contains 72 events. The series started with a partial solar eclipse on July 13, 1219. It contains annular eclipses from November 20, 1435, through January 13, 1526, with a hybrid eclipse on January 24, 1544. It has total eclipses from February 3, 1562, through June 21, 2373. The series ends at member 72 as a partial eclipse on September 5, 2499. The longest duration of totality was 6 minutes, 49.97 seconds on August 7, 1850.[2] The total eclipses of this saros series are getting shorter and farther south with each iteration. All eclipses in this series occurs at the Moon’s ascending node.

Series members 30–56 occur between 1742 and 2211
30 31 32
June 3, 1742 June 13, 1760
June 24, 1778
33 34 35
July 4, 1796 July 17, 1814 July 27, 1832
36 37 38
August 7, 1850
August 18, 1868

August 29, 1886
39 40 41

September 9, 1904

September 21, 1922

October 1, 1940
42 43 44

October 12, 1958

October 23, 1976

November 3, 1994
45 46 47

November 13, 2012

November 25, 2030

December 5, 2048
48 49 50

December 17, 2066

December 27, 2084

January 8, 2103
51 52 53

January 19, 2121

January 30, 2139

February 9, 2157
54 55 56

February 21, 2175

March 3, 2193

March 15, 2211

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Notes

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. http://eclipse.gsfc.nasa.gov/SEsaros/SEsaros133.html

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.