Solar eclipse of February 3, 1916
A total solar eclipse occurred on February 3, 1916. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in Colombia, Venezuela, and the whole Guadeloupe except Marie-Galante, Saint Martin and Saint Barthélemy.
Solar eclipse of February 3, 1916 | |
---|---|
Map | |
Type of eclipse | |
Nature | Total |
Gamma | 0.4987 |
Magnitude | 1.028 |
Maximum eclipse | |
Duration | 156 sec (2 m 36 s) |
Coordinates | 11.1°N 67.7°W |
Max. width of band | 108 km (67 mi) |
Times (UTC) | |
Greatest eclipse | 16:00:21 |
References | |
Saros | 139 (24 of 71) |
Catalog # (SE5000) | 9317 |
Related eclipses
Solar eclipse 1913–1917
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]
Solar eclipse series sets from 1913–1917 | ||||
---|---|---|---|---|
Descending node | Ascending node | |||
114 | August 31, 1913 Partial |
119 | February 25, 1914 Annular | |
124 | August 21, 1914 Total |
129 | February 14, 1915 Annular | |
134 | August 10, 1915 Annular |
139 | February 3, 1916 Total | |
144 | July 30, 1916 Annular |
149 | January 23, 1917 Partial | |
154 | July 19, 1917 Partial |
Saros 139
It is a part of saros series 139, repeating every 18 years, 11 days, 8 hours, containing 71 events. The series started with partial solar eclipse on May 17, 1501. It contains hybrid eclipses on August 11, 1627 through to December 9, 1825 and total eclipses from December 21, 1843 through to March 26, 2601. The series ends at member 71 as a partial eclipse on July 3, 2763. Its eclipses are entabulated in three columns; each one in the same column, every third eclipse, is one exeligmos apart so cast shadows over approximately the same parts of the Earth.
The solar eclipse of June 13, 2132 will be the longest total solar eclipse since July 11, 1991 at 6 minutes, 55.02 seconds.
The longest duration of totality will be produced by member 39 at 7 minutes, 29.22 seconds on July 16, 2186.[2] After that date each duration will decrease, until the series end. This date is the longest solar eclipse computed between 4000 BC and 6000 AD.[3] Saros series eclipses are during the Moon’s ascending node (a term related to our equator and polar-naming conventions).
Series members 24–45 occur between 1901 and 2300 | ||
---|---|---|
24 | 25 | 26 |
February 3, 1916 |
February 14, 1934 |
February 25, 1952 |
27 | 28 | 29 |
March 7, 1970 |
March 18, 1988 |
March 29, 2006 |
30 | 31 | 32 |
April 8, 2024 |
April 20, 2042 |
April 30, 2060 |
33 | 34 | 35 |
May 11, 2078 |
May 22, 2096 |
June 3, 2114 |
36 | 37 | 38 |
June 13, 2132 |
June 25, 2150 |
July 5, 2168 |
39 | 40 | 41 |
July 16, 2186 |
July 27, 2204 |
August 8, 2222 |
42 | 43 | 44 |
August 18, 2240 |
August 29, 2258 |
September 9, 2276 |
45 | ||
September 20, 2294 |
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1901 and 2100 | |||
---|---|---|---|
March 6, 1905 (Saros 138) |
February 3, 1916 (Saros 139) |
January 3, 1927 (Saros 140) | |
December 2, 1937 (Saros 141) |
November 1, 1948 (Saros 142) |
October 2, 1959 (Saros 143) | |
August 31, 1970 (Saros 144) |
July 31, 1981 (Saros 145) |
June 30, 1992 (Saros 146) | |
May 31, 2003 (Saros 147) |
April 29, 2014 (Saros 148) |
March 29, 2025 (Saros 149) | |
February 27, 2036 (Saros 150) |
January 26, 2047 (Saros 151) |
December 26, 2057 (Saros 152) | |
November 24, 2068 (Saros 153) |
October 24, 2079 (Saros 154) |
September 23, 2090 (Saros 155) |
Notes
- van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- Saros Series Catalog of Solar Eclipses NASA Eclipse Web Site.
- Ten Millennium Catalog of Long Solar Eclipses, −3999 to +6000 (4000 BCE to 6000 CE) Fred Espenak.