Solar eclipse of December 2, 1937

An annular solar eclipse occurred on December 2, 1937. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Ogasawara, Tokyo and South Seas Mandate (the part now belonging to Marshall Islands) in Japan, and Gilbert and Ellice Islands (the part now belonging to Kiribati).

Solar eclipse of December 2, 1937
Map
Type of eclipse
NatureAnnular
Gamma0.4389
Magnitude0.9184
Maximum eclipse
Duration720 sec (12 m 0 s)
Coordinates4°N 167.8°W / 4; -167.8
Max. width of band344 km (214 mi)
Times (UTC)
Greatest eclipse23:05:45
References
Saros141 (19 of 70)
Catalog # (SE5000)9370

The duration of annularity at maximum eclipse (closest to but slightly shorter than the longest duration) was 12 minutes, 0.33 seconds in the Pacific Ocean. It was the longest annular solar eclipse since December 25, 1628, but the Solar eclipse of December 14, 1955 lasted longer.[1]

Solar eclipses 1935–1938

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[2]

Solar eclipse series sets from 1935–1938
Ascending node   Descending node
111January 5, 1935

Partial
116June 30, 1935

Partial
121December 25, 1935

Annular
126June 19, 1936

Total
131December 13, 1936

Annular
136June 8, 1937

Total
141December 2, 1937

Annular
146May 29, 1938

Total
151November 21, 1938

Partial

Saros 141

Solar saros 141, repeating every about 18 years, 11 days, and 8 hours, contains 70 events. The series started with partial solar eclipse on May 19, 1613. It contains 41 annular eclipses from August 4, 1739, to October 14, 2460. There are no total eclipses in this series. The series ends at member 70 as a partial eclipse on June 13, 2857. The longest annular eclipse occurred on December 14, 1955, with maximum duration of annularity at 12 minutes and 9 seconds. All eclipses in this series occur at the Moon’s ascending node.[3]

Series members 17–36 occur between 1901 and 2259
17 18 19

November 11, 1901

November 22, 1919

December 2, 1937
20 21 22

December 14, 1955

December 24, 1973

January 4, 1992
23 24 25

January 15, 2010

January 26, 2028

February 5, 2046
26 27 28

February 17, 2064

February 27, 2082

March 10, 2100
29 30 31

March 22, 2118

April 1, 2136

April 12, 2154
32 33 34

April 23, 2172

May 4, 2190

May 15, 2208
35 36

May 27, 2226

June 6, 2244

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Notes

  1. "Annular Solar Eclipses with Durations Exceeding 11m 00s: -3999 to 6000". NASA Eclipse Web Site.
  2. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  3. Saros Series Catalog of Solar Eclipses NASA Eclipse Web Site.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.