Théorème des quatre carrés de Lagrange
Le théorème des quatre carrés de Lagrange, également connu sous le nom de conjecture de Bachet, s'énonce de la façon suivante :
Pour les articles homonymes, voir Théorèmes de Lagrange.
Plus formellement, pour tout entier positif n, il existe des entiers a, b, c, d tels que :
Il correspond à une équation diophantienne qui se résout avec les techniques de l'arithmétique modulaire. La démonstration du théorème repose (en partie) sur l'identité des quatre carrés d'Euler :
Histoire
Ce théorème a été conjecturé par Claude-Gaspard Bachet de Méziriac en 1621, dans les notes accompagnant sa traduction en latin du Diophante.
Fermat affirma avoir une preuve de cette conjecture et même d'une généralisation: le théorème des nombres polygonaux, finalement démontré par Cauchy en 1813. Il proclama son intention d'écrire un livre qui révolutionnerait cette partie de l'arithmétique[1], mais aucun livre ne parut[2].
Euler travailla sur ce sujet à partir de 1730 et publia en 1751[3] une démonstration qu'il reconnaissait incomplète, mais qui montrait déjà que tout entier positif est somme de quatre carrés de rationnels[4].
Le théorème fut démontré en 1770 par Joseph Louis Lagrange[2] et redémontré en 1772 par Euler[5].
Adrien-Marie Legendre l'améliora en 1797-1798, en affirmant qu'un entier positif est somme de trois carrés si et seulement s'il n'est pas de la forme 4k(8m + 7). Sa démonstration était défectueuse mais en 1801, Carl Friedrich Gauss donna la première preuve correcte et complète de ce théorème des trois carrés. Ceci résout complètement le problème de Waring pour k = 2.
La preuve classique
Différentes versions[6],[7],[8],[9] (très similaires) de la preuve classique de Lagrange se trouvent facilement dans la littérature moderne. La preuve présentée ici[10] en est une version légèrement simplifiée (on évite de considérer séparément les cas où m est pair et impair).
D'après l'identité des quatre carrés d'Euler (et le fait que le théorème est vrai pour les nombres 0, 1 et 2), il suffit de démontrer le lemme principal ci-dessous. On utilise pour cela un premier lemme (qui est un cas particulier élémentaire d'un théorème de Chevalley[11]) :
Lemme préliminaire — Pour tout nombre premier[12] impair p, il existe des entiers naturels a et b tels que p divise 1 + a2 + b2.
Lemme principal — Tout nombre premier impair p est somme de quatre carrés.
Démonstration basée sur les quaternions de Hurwitz
Une autre preuve[13] du lemme principal ci-dessus (à partir du lemme préliminaire) utilise l'anneau unitaire (intègre mais non commutatif) des quaternions de Hurwitz, également appelés entiers de Hurwitz, qui sont les quaternions de la forme
Fonctions arithmétiques
Les fonctions arithmétiques permettent d'obtenir des résultats plus généraux. Si on pose comme étant le nombre de façons de décomposer sous forme d'une somme de 4 carrés, on obtient le résultat suivant :
.
Moyennant l'utilisation des séries de Lambert, on en déduit le théorème suivant, dit théorème de Jacobi :
Par exemple, 1 n'est divisible que par lui-même, qui n'est pas congru à 0 modulo 4. Donc r4(1) = 8. Trois des 8 formes sont :
, , .
Sommes de carrés non nuls
Si on exige de plus qu'aucun des carrés de la somme ne soit nul (autrement dit que la décomposition soit en quatre carrés exactement, et non en quatre carrés ou moins), on a le résultat suivant : les seuls entiers non décomposables ainsi sont 0, 1, 3, 5, 9, 11, 17, 29, 41, et les nombres de la forme , et pour entier positif ou nul[14].
Notes et références
- Paul Tannery et Charles Henry, Œuvres de Fermat, t. 3, 1896, p. 252 : Commentaire de Bachet sur IV, 31.
- Lagrange, « Démonstration d'un théorème d'arithmétique », Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Berlin, 1770, p. 123-133 – Œuvres complètes, tome 3, p. 189-201.
- E241-E242.
- (en) Leonard Eugene Dickson, History of the Theory of Numbers (en) [détail des éditions], vol. 2, (chap. 8 (Sum of Four Squares), p. 279.
- (la) L. Euler, « Novae demonstrationes circa resolutionem numerorum in quadrata (E445) », Nova Acta Eruditorum, , p. 48-69 (lire en ligne).
- Théorèmes 166 à 169 de : (de) E. Landau, Vorlesungen über Zahlentheorie, New York, Chelsea, 1927. Second edition translated into English by Jacob E. Goodman, Providence RH, Chelsea, 1958.
- Théorème 369 de G. H. Hardy et E. M. Wright (trad. de l'anglais par François Sauvageot, préf. Catherine Goldstein), Introduction à la théorie des nombres [« An Introduction to the Theory of Numbers »] [détail de l’édition].
- Paragraphe 5.7 de : (en) Ivan Niven et Herbert S. Zuckerman, An Introduction to the Theory of Numbers, John Wiley and Sons, 1960.
- (en) Alan Baker, A Concise Introduction to the Theory of Numbers, CUP, (lire en ligne), p. 39-40.
- (en) Harold Davenport, The Higher Arithmetic : An Introduction to the Theory of Numbers, CUP, (1re éd. 1952) (lire en ligne), p. 125-126. Il est intéressant de remarquer que la formulation légèrement différente de la preuve de Davenport fait appel à la méthode de descente infinie, plutôt qu'à celle de la contradiction directe comme (en) Hans Rademacher et Otto Toeplitz, The Enjoyment of Mathematics, PUP, , 7e éd. (1re éd. 1933), 204 p. (ISBN 978-0-691-02351-9, lire en ligne), p. 58-60.
- Davenport 1999, p. 125.
- Ce résultat s'étend à tout nombre impair m, non nécessairement premier : voir par exemple (en) Harold Davenport, « The geometry of numbers », Math. Gazette, vol. 31, , p. 206-210. Davenport ne donne pas la preuve mais indique : « This is proved by simple considerations relating to quadratic residues when m is a prime p, then by induction on v when m = pv, and finally by combination of these results it follows for general m. »
- (en) John Stillwell, Elements of Number Theory, Springer, (lire en ligne), détaille cette approche (chap. 8) et mentionne (p. 148) qu'on peut aussi la trouver dans Hardy et Wright (1979) et dans Samuel (1970).
- Voir (en) John Horton Conway, The Sensual (Quadratic) Form, Mathematical Association of America, (lire en ligne), p. 140, ou .
Voir aussi
Articles connexes
Bibliographie
- (en) James Joseph Sylvester, « Note on a principle in the theory of numbers and the resolubility of any number into the sum of four squares », Q. J. Math., , p. 196-197 (lire en ligne)
- Alexandre Junod, « Sommes de deux et quatre carrés », Bulletin de la SSPMP, vol. 144, , p. 45-49 (lire en ligne)
- Arithmétique et théorie des nombres