Complex normal distribution
In probability theory, the family of complex normal distributions, denoted or , characterizes complex random variables whose real and imaginary parts are jointly normal.[1] The complex normal family has three parameters: location parameter μ, covariance matrix , and the relation matrix . The standard complex normal is the univariate distribution with , , and .
Parameters |
— location | ||
---|---|---|---|
Support | |||
complicated, see text | |||
Mean | |||
Mode | |||
Variance | |||
CF |
An important subclass of complex normal family is called the circularly-symmetric (central) complex normal and corresponds to the case of zero relation matrix and zero mean: and .[2] This case is used extensively in signal processing, where it is sometimes referred to as just complex normal in the literature.
Definitions
Complex standard normal random variable
The standard complex normal random variable or standard complex Gaussian random variable is a complex random variable whose real and imaginary parts are independent normally distributed random variables with mean zero and variance .[3]: p. 494 [4]: pp. 501 Formally,
|
(Eq.1) |
where denotes that is a standard complex normal random variable.
Complex normal random variable
Suppose and are real random variables such that is a 2-dimensional normal random vector. Then the complex random variable is called complex normal random variable or complex Gaussian random variable.[3]: p. 500
|
(Eq.2) |
Complex standard normal random vector
A n-dimensional complex random vector is a complex standard normal random vector or complex standard Gaussian random vector if its components are independent and all of them are standard complex normal random variables as defined above.[3]: p. 502 [4]: pp. 501 That is a standard complex normal random vector is denoted .
|
(Eq.3) |
Complex normal random vector
If and are random vectors in such that is a normal random vector with components. Then we say that the complex random vector
is a complex normal random vector or a complex Gaussian random vector.
|
(Eq.4) |
Mean, covariance, and relation
The complex Gaussian distribution can be described with 3 parameters:[5]
where denotes matrix transpose of , and denotes conjugate transpose.[3]: p. 504 [4]: pp. 500
Here the location parameter is a n-dimensional complex vector; the covariance matrix is Hermitian and non-negative definite; and, the relation matrix or pseudo-covariance matrix is symmetric. The complex normal random vector can now be denoted as
Moreover, matrices and are such that the matrix
is also non-negative definite where denotes the complex conjugate of .[5]
Relationships between covariance matrices
As for any complex random vector, the matrices and can be related to the covariance matrices of and via expressions
and conversely
Density function
The probability density function for complex normal distribution can be computed as
where and .
Characteristic function
The characteristic function of complex normal distribution is given by[5]
where the argument is an n-dimensional complex vector.
Properties
- If is a complex normal n-vector, an m×n matrix, and a constant m-vector, then the linear transform will be distributed also complex-normally:
- If is a complex normal n-vector, then
- Central limit theorem. If are independent and identically distributed complex random variables, then
- where and .
- The modulus of a complex normal random variable follows a Hoyt distribution.[6]
Circularly-symmetric central case
Definition
A complex random vector is called circularly symmetric if for every deterministic the distribution of equals the distribution of .[4]: pp. 500–501
Central normal complex random vectors that are circularly symmetric are of particular interest because they are fully specified by the covariance matrix .
The circularly-symmetric (central) complex normal distribution corresponds to the case of zero mean and zero relation matrix, i.e. and .[3]: p. 507 [7] This is usually denoted
Distribution of real and imaginary parts
If is circularly-symmetric (central) complex normal, then the vector is multivariate normal with covariance structure
where and .
Probability density function
For nonsingular covariance matrix , its distribution can also be simplified as[3]: p. 508
- .
Therefore, if the non-zero mean and covariance matrix are unknown, a suitable log likelihood function for a single observation vector would be
The standard complex normal (defined in Eq.1)corresponds to the distribution of a scalar random variable with , and . Thus, the standard complex normal distribution has density
Properties
The above expression demonstrates why the case , is called “circularly-symmetric”. The density function depends only on the magnitude of but not on its argument. As such, the magnitude of a standard complex normal random variable will have the Rayleigh distribution and the squared magnitude will have the exponential distribution, whereas the argument will be distributed uniformly on .
If are independent and identically distributed n-dimensional circular complex normal random vectors with , then the random squared norm
has the generalized chi-squared distribution and the random matrix
has the complex Wishart distribution with degrees of freedom. This distribution can be described by density function
where , and is a nonnegative-definite matrix.
See also
- Complex normal ratio distribution
- Directional statistics § Distribution of the mean (polar form)
- Normal distribution
- Multivariate normal distribution (a complex normal distribution is a bivariate normal distribution)
- Generalized chi-squared distribution
- Wishart distribution
- Complex random variable
References
- Goodman, N.R. (1963). "Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)". The Annals of Mathematical Statistics. 34 (1): 152–177. doi:10.1214/aoms/1177704250. JSTOR 2991290.
- bookchapter, Gallager.R, pg9.
- Lapidoth, A. (2009). A Foundation in Digital Communication. Cambridge University Press. ISBN 9780521193955.
- Tse, David (2005). Fundamentals of Wireless Communication. Cambridge University Press. ISBN 9781139444668.
- Picinbono, Bernard (1996). "Second-order complex random vectors and normal distributions". IEEE Transactions on Signal Processing. 44 (10): 2637–2640. doi:10.1109/78.539051.
- Daniel Wollschlaeger. "The Hoyt Distribution (Documentation for R package 'shotGroups' version 0.6.2)".
- bookchapter, Gallager.R