Multinomial distribution

In probability theory, the multinomial distribution is a generalization of the binomial distribution. For example, it models the probability of counts for each side of a k-sided die rolled n times. For n independent trials each of which leads to a success for exactly one of k categories, with each category having a given fixed success probability, the multinomial distribution gives the probability of any particular combination of numbers of successes for the various categories.

Multinomial
Parameters

number of trials (integer)
number of mutually exclusive events (integer)

event probabilities, where
Support
PMF
Mean
Variance
Entropy
MGF
CF where
PGF

When k is 2 and n is 1, the multinomial distribution is the Bernoulli distribution. When k is 2 and n is bigger than 1, it is the binomial distribution. When k is bigger than 2 and n is 1, it is the categorical distribution. The term "multinoulli" is sometimes used for the categorical distribution to emphasize this four-way relationship (so n determines the suffix, and k the prefix).

The Bernoulli distribution models the outcome of a single Bernoulli trial. In other words, it models whether flipping a (possibly biased) coin one time will result in either a success (obtaining a head) or failure (obtaining a tail). The binomial distribution generalizes this to the number of heads from performing n independent flips (Bernoulli trials) of the same coin. The multinomial distribution models the outcome of n experiments, where the outcome of each trial has a categorical distribution, such as rolling a k-sided die n times.

Let k be a fixed finite number. Mathematically, we have k possible mutually exclusive outcomes, with corresponding probabilities p1, ..., pk, and n independent trials. Since the k outcomes are mutually exclusive and one must occur we have pi  0 for i = 1, ..., k and . Then if the random variables Xi indicate the number of times outcome number i is observed over the n trials, the vector X = (X1, ..., Xk) follows a multinomial distribution with parameters n and p, where p = (p1, ..., pk). While the trials are independent, their outcomes Xi are dependent because they must be summed to n.

Definitions

Probability mass function

Suppose one does an experiment of extracting n balls of k different colors from a bag, replacing the extracted balls after each draw. Balls of the same color are equivalent. Denote the variable which is the number of extracted balls of color i (i = 1, ..., k) as Xi, and denote as pi the probability that a given extraction will be in color i. The probability mass function of this multinomial distribution is:

for non-negative integers x1, ..., xk.

The probability mass function can be expressed using the gamma function as:

This form shows its resemblance to the Dirichlet distribution, which is its conjugate prior.


Example

Suppose that in a three-way election for a large country, candidate A received 20% of the votes, candidate B received 30% of the votes, and candidate C received 50% of the votes. If six voters are selected randomly, what is the probability that there will be exactly one supporter for candidate A, two supporters for candidate B and three supporters for candidate C in the sample?

Note: Since we’re assuming that the voting population is large, it is reasonable and permissible to think of the probabilities as unchanging once a voter is selected for the sample. Technically speaking this is sampling without replacement, so the correct distribution is the multivariate hypergeometric distribution, but the distributions converge as the population grows large in comparison to a fixed sample size[1].

Properties

Expected value and variance

The expected number of times the outcome i was observed over n trials is

The covariance matrix is as follows. Each diagonal entry is the variance of a binomially distributed random variable, and is therefore

The off-diagonal entries are the covariances:

for i, j distinct.

All covariances are negative because for fixed n, an increase in one component of a multinomial vector requires a decrease in another component.

When these expressions are combined into a matrix with i, j element the result is a k × k positive-semidefinite covariance matrix of rank k  1. In the special case where k = n and where the pi are all equal, the covariance matrix is the centering matrix.

The entries of the corresponding correlation matrix are

Note that the number of trials n drops out of this expression.

Each of the k components separately has a binomial distribution with parameters n and pi, for the appropriate value of the subscript i.

The support of the multinomial distribution is the set

Its number of elements is

Matrix notation

In matrix notation,

and

with pT = the row vector transpose of the column vector p.

As slices of generalized Pascal's triangle

Just like one can interpret the binomial distribution as (normalized) one-dimensional (1D) slices of Pascal's triangle, so too can one interpret the multinomial distribution as 2D (triangular) slices of Pascal's pyramid, or 3D/4D/+ (pyramid-shaped) slices of higher-dimensional analogs of Pascal's triangle. This reveals an interpretation of the range of the distribution: discretized equilateral "pyramids" in arbitrary dimension—i.e. a simplex with a grid.

As polynomial coefficients

Similarly, just like one can interpret the binomial distribution as the polynomial coefficients of when expanded, one can interpret the multinomial distribution as the coefficients of when expanded, noting that just the coefficients must sum up to 1.

Large deviation theory

Asymptotics

By Stirling's formula, at the limit of , we have

where can be interpreted as the empirical distribution of data, and is the Kullback–Leibler divergence.

This formula can be interpreted as follows.

Consider the space of all possible distributions over the categories . After independent samples from the categorical distribution (which is how we construct the multinomial distribution), we obtain an empirical distribution .

By the asymptotic formula, the probability that empirical distribution deviates from the actual distribution decays exponentially, at a rate . The more experiments and the more different is from , the less likely it is to see such an empirical distribution.

Concentration at large N

Due to the exponential decay, at large , almost all the probability mass is concentrated in a small neighborhood of . In this small neighborhood, we can take the first nonzero term in the Taylor expansion of , to obtain

This resembles the gaussian distribution, which suggests the following theorem:


Theorem. At the limit, converges in distribution to the chi-squared distribution .

If we sample from the multinomial distribution , and plot the heatmap of the samples within the 2-dimensional simplex (here shown as a black triangle), we notice that as , the distribution converges to a gaussian around the point , with the contours converging in shape to ellipses, with radii converging as . Meanwhile, the separation between the discrete points converge as , and so the discrete multinomial distribution converges to a continuous gaussian distribution.

Proof. The space of all distributions over categories is a simplex: , and the set of all possible empirical distributions after experiments is a subset of the simplex: . That is, it is the intersection between and the lattice .

As increases, most of the probability mass is concentrated in a subset of near , and the probability distribution near becomes well-approximated by

From this, we see that the subset upon which the mass is concentrated has radius on the order of , but the points in the subset are separated by distance on the order of , so at large , the points merge into a continuum.

To convert this from a discrete probability distribution to a continuous probability density, we need to multiply by the volume occupied by each point of in . However, by symmetry, every point occupies exactly the same volume (except a negligible set on the boundary), so we obtain a probability density , where is a constant.

Finally, since the simplex is not all of , but only within a -dimensional plane, we obtain the desired result.

Conditional concentration at large N

The above concentration phenomenon can be easily generalized to the case where we condition upon linear constraints. This is the theoretical justification for Pearson's chi-squared test.

Theorem. If we impose independent linear constraints

(notice that the first constraint is simply the requirement that the empirical distributions sum to one), such that satisfies all these constraints simultaneously, then, for samples from the multinomial distribution conditional on the linear constraints, at the limit, converges in distribution to the chi-squared distribution .

Proof. The same proof applies, but this time is the intersection of with and hyperplanes, all linearly independent, so the probability density is restricted to a -dimensional plane.

The above theorem is not entirely satisfactory, because by definition, every one of must be a rational number, whereas may be chosen from any number in . In particular, may satisfy linear constraints that no can possibly satisfy, such as . The next theorem fixes this issue:

Theorem.

  • Given functions , such that they are continuously differentiable in a neighborhood of , and the vectors are linearly independent;
  • given sequences , such that asymptotically for each ;
  • then for the multinomial distribution conditional on constraints , converges in distribution to at the limit.

In some fields such as natural language processing, categorical and multinomial distributions are synonymous and it is common to speak of a multinomial distribution when a categorical distribution is actually meant. This stems from the fact that it is sometimes convenient to express the outcome of a categorical distribution as a "1-of-K" vector (a vector with one element containing a 1 and all other elements containing a 0) rather than as an integer in the range ; in this form, a categorical distribution is equivalent to a multinomial distribution over a single trial.

Statistical inference

Equivalence tests for multinomial distributions

The goal of equivalence testing is to establish the agreement between a theoretical multinomial distribution and observed counting frequencies. The theoretical distribution may be a fully specified multinomial distribution or a parametric family of multinomial distributions.

Let denote a theoretical multinomial distribution and let be a true underlying distribution. The distributions and are considered equivalent if for a distance and a tolerance parameter . The equivalence test problem is versus . The true underlying distribution is unknown. Instead, the counting frequencies are observed, where is a sample size. An equivalence test uses to reject . If can be rejected then the equivalence between and is shown at a given significance level. The equivalence test for Euclidean distance can be found in text book of Wellek (2010).[2] The equivalence test for the total variation distance is developed in Ostrovski (2017).[3] The exact equivalence test for the specific cumulative distance is proposed in Frey (2009).[4]

The distance between the true underlying distribution and a family of the multinomial distributions is defined by . Then the equivalence test problem is given by and . The distance is usually computed using numerical optimization. The tests for this case are developed recently in Ostrovski (2018).[5]


Random variate generation

First, reorder the parameters such that they are sorted in descending order (this is only to speed up computation and not strictly necessary). Now, for each trial, draw an auxiliary variable X from a uniform (0, 1) distribution. The resulting outcome is the component

{Xj = 1, Xk = 0 for k  j } is one observation from the multinomial distribution with and n = 1. A sum of independent repetitions of this experiment is an observation from a multinomial distribution with n equal to the number of such repetitions.

Sampling using repeated conditional binomial samples

Given the parameters and a total for the sample such that , it is possible to sample sequentially for the number in an arbitrary state , by partitioning the state space into and not-, conditioned on any prior samples already taken, repeatedly.

Algorithm: Sequential conditional binomial sampling

S = N
rho = 1
for i in [1,k-1]:
    if rho != 0:
        X[i] ~ Binom(S,p[i]/rho)
    else X[i] = 0
    S = S - X[i]
    rho = rho - p[i]
X[k] = S

Heuristically, each application of the binomial sample reduces the available number to sample from and the conditional probabilities are likewise updated to ensure logical consistency.[6]

References

Citations

  1. "probability - multinomial distribution sampling". Cross Validated. Retrieved 2022-07-28.
  2. Wellek, Stefan (2010). Testing statistical hypotheses of equivalence and noninferiority. Chapman and Hall/CRC. ISBN 978-1439808184.
  3. Ostrovski, Vladimir (May 2017). "Testing equivalence of multinomial distributions". Statistics & Probability Letters. 124: 77–82. doi:10.1016/j.spl.2017.01.004. S2CID 126293429.Official web link (subscription required). Alternate, free web link.
  4. Frey, Jesse (March 2009). "An exact multinomial test for equivalence". The Canadian Journal of Statistics. 37: 47–59. doi:10.1002/cjs.10000. S2CID 122486567.Official web link (subscription required).
  5. Ostrovski, Vladimir (March 2018). "Testing equivalence to families of multinomial distributions with application to the independence model". Statistics & Probability Letters. 139: 61–66. doi:10.1016/j.spl.2018.03.014. S2CID 126261081.Official web link (subscription required). Alternate, free web link.
  6. "11.5: The Multinomial Distribution". Statistics LibreTexts. 2020-05-05. Retrieved 2023-09-13.

Sources

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.