Marchenko–Pastur distribution

In the mathematical theory of random matrices, the Marchenko–Pastur distribution, or Marchenko–Pastur law, describes the asymptotic behavior of singular values of large rectangular random matrices. The theorem is named after Soviet mathematicians Vladimir Marchenko and Leonid Pastur who proved this result in 1967.

Plot of the Marchenko-Pastur distribution for various values of lambda

If denotes a random matrix whose entries are independent identically distributed random variables with mean 0 and variance , let

and let be the eigenvalues of (viewed as random variables). Finally, consider the random measure

counting the number of eigenvalues in the subset included in .

Theorem. Assume that so that the ratio . Then (in weak* topology in distribution), where

and

with

The Marchenko–Pastur law also arises as the free Poisson law in free probability theory, having rate and jump size .

Cumulative distribution function

Using the same notation, cumulative distribution function reads

where and .

Moments

For each , its -th moment is

Some transforms of this law

The Cauchy transform (which is the negative of the Stieltjes transformation) is given by

Voiculescu's -transform is given by

and the -transform by

Application to correlation matrices

For the special case of correlation matrices, we know that and . This bounds the probability mass over the interval defined by

Since this distribution describes the spectrum of random matrices with mean 0, the eigenvalues of correlation matrices that fall inside of the aforementioned interval could be considered spurious or noise. For instance, obtaining a correlation matrix of 10 stock returns calculated over a 252 trading days period would render . Thus, out of 10 eigenvalues of said correlation matrix, only the values higher than 1.43 would be considered significantly different from random.

See also

References

    • Götze, F.; Tikhomirov, A. (2004). "Rate of convergence in probability to the Marchenko–Pastur law". Bernoulli. 10 (3): 503–548. doi:10.3150/bj/1089206408.
    • Marchenko, V. A.; Pastur, L. A. (1967). "Распределение собственных значений в некоторых ансамблях случайных матриц" [Distribution of eigenvalues for some sets of random matrices]. Mat. Sb. N.S. (in Russian). 72 (114:4): 507–536. Bibcode:1967SbMat...1..457M. doi:10.1070/SM1967v001n04ABEH001994. Link to free-access pdf of Russian version
    • Nica, A.; Speicher, R. (2006). Lectures on the Combinatorics of Free probability theory. Cambridge Univ. Press. pp. 204, 368. ISBN 0-521-85852-6. Link to free download Another free access site
    • Zhang, W.; Abreu, G.; Inamori, M.; Sanada, Y. (2011). "Spectrum sensing algorithms via finite random matrices". IEEE Transactions on Communications. 60 (1): 164–175. doi:10.1109/TCOMM.2011.112311.100721. S2CID 206642535.
    • Epps, Brenden; Krivitzky, Eric M. (2019). "Singular value decomposition of noisy data: mode corruption". Experiments in Fluids. 60 (8): 1–30. Bibcode:2019ExFl...60..121E. doi:10.1007/s00348-019-2761-y. S2CID 198436243.
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.