TGFB1I1

Transforming growth factor beta-1-induced transcript 1 protein is a protein that in humans is encoded by the TGFB1I1 gene.[5][6] Often put together with and studied alongside TGFB1I1 is the mouse homologue HIC-5 ( Hydrogen Peroxide-Inducible Clone-5). As the name suggests, TGFB1I1 is an induced form of the larger family of TGFB1. Studies suggest TGFB1I1 plays a role in processes of cell growth, proliferation,[7] migration, differentiation[8] and senescence.[9] TGFB1I1 is most localized at focal adhesion complexes of cells,[5] although it may be found active in the cytosol, nucleus and cell membrane as well.[7][10][11]

TGFB1I1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesTGFB1I1, ARA55, HIC-5, HIC5, TSC-5, transforming growth factor beta 1 induced transcript 1
External IDsOMIM: 602353 MGI: 102784 HomoloGene: 7572 GeneCards: TGFB1I1
Orthologs
SpeciesHumanMouse
Entrez

7041

21804

Ensembl

ENSG00000140682

ENSMUSG00000030782

UniProt

O43294

Q62219

RefSeq (mRNA)

NM_015927
NM_001042454
NM_001164719

NM_001289550
NM_001289551
NM_001289552
NM_001289553
NM_009365

RefSeq (protein)

NP_001035919
NP_001158191
NP_057011
NP_001158191.1
NP_057011.2

NP_001276479
NP_001276480
NP_001276481
NP_001276482

Location (UCSC)Chr 16: 31.47 – 31.48 MbChr 7: 127.85 – 127.85 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Functions

Transforming growth factor beta-1-induced transcript 1 plays a role in a number of cell functions. Originally, TGFB1I1 was isolated as a senescence-inducing gene from mouse osteoblastic cells through treatment with transforming growth factor beta-1 and hydrogen peroxide.[9] During this, TGFB1I1 was also being independently discovered by numerous other groups and was characterized as a focal adhesion protein,[12][13] an androgen and glucocorticoid receptor co-activator,[10][14] a negative regulator of muscle differentiation,[8] and major player in the recovery of arterial media.[15][16]

Interactions

TGFB1I1 has been shown to interact with:

Model organisms

Model organisms have been used in the study of TGFB1I1 function. A conditional knockout mouse line called Tgfb1i1tm1b(KOMP)Wtsi was generated at the Wellcome Trust Sanger Institute.[24] Male and female animals underwent a standardized phenotypic screen[25] to determine the effects of deletion.[26][27][28][29] Additional screens performed: - In-depth immunological phenotyping[30]

See also

References

  1. GRCh38: Ensembl release 89: ENSG00000140682 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000030782 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Matsuya M, Sasaki H, Aoto H, Mitaka T, Nagura K, Ohba T, et al. (January 1998). "Cell adhesion kinase beta forms a complex with a new member, Hic-5, of proteins localized at focal adhesions". The Journal of Biological Chemistry. 273 (2): 1003–1014. doi:10.1074/jbc.273.2.1003. PMID 9422762.
  6. Fujimoto N, Yeh S, Kang HY, Inui S, Chang HC, Mizokami A, Chang C (March 1999). "Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate". The Journal of Biological Chemistry. 274 (12): 8316–8321. doi:10.1074/jbc.274.12.8316. PMID 10075738.
  7. Heitzer MD, DeFranco DB (July 2006). "Hic-5/ARA55, a LIM domain-containing nuclear receptor coactivator expressed in prostate stromal cells". Cancer Research. 66 (14): 7326–7333. doi:10.1158/0008-5472.can-05-2379. PMID 16849583.
  8. Hu Y, Cascone PJ, Cheng L, Sun D, Nambu JR, Schwartz LM (August 1999). "Lepidopteran DALP, and its mammalian ortholog HIC-5, function as negative regulators of muscle differentiation". Proceedings of the National Academy of Sciences of the United States of America. 96 (18): 10218–10223. doi:10.1073/pnas.96.18.10218. PMC 17869. PMID 10468589.
  9. Shibanuma M, Mashimo J, Kuroki T, Nose K (October 1994). "Characterization of the TGF beta 1-inducible hic-5 gene that encodes a putative novel zinc finger protein and its possible involvement in cellular senescence". The Journal of Biological Chemistry. 269 (43): 26767–26774. doi:10.1016/S0021-9258(18)47085-8. PMID 7929412.
  10. Yang L, Guerrero J, Hong H, DeFranco DB, Stallcup MR (June 2000). "Interaction of the tau2 transcriptional activation domain of glucocorticoid receptor with a novel steroid receptor coactivator, Hic-5, which localizes to both focal adhesions and the nuclear matrix". Molecular Biology of the Cell. 11 (6): 2007–2018. doi:10.1091/mbc.11.6.2007. PMC 14899. PMID 10848625.
  11. Shibanuma M, Kim-Kaneyama JR, Ishino K, Sakamoto N, Hishiki T, Yamaguchi K, et al. (March 2003). "Hic-5 communicates between focal adhesions and the nucleus through oxidant-sensitive nuclear export signal". Molecular Biology of the Cell. 14 (3): 1158–1171. doi:10.1091/mbc.02-06-0099. PMC 151587. PMID 12631731.
  12. Nishiya N, Iwabuchi Y, Shibanuma M, Côté JF, Tremblay ML, Nose K (April 1999). "Hic-5, a paxillin homologue, binds to the protein-tyrosine phosphatase PEST (PTP-PEST) through its LIM 3 domain". The Journal of Biological Chemistry. 274 (14): 9847–9853. doi:10.1074/jbc.274.14.9847. PMID 10092676.
  13. Thomas SM, Hagel M, Turner CE (January 1999). "Characterization of a focal adhesion protein, Hic-5, that shares extensive homology with paxillin". Journal of Cell Science. 112 ( Pt 2) (2): 181–190. doi:10.1242/jcs.112.2.181. PMID 9858471.
  14. Fujimoto N, Yeh S, Kang HY, Inui S, Chang HC, Mizokami A, Chang C (March 1999). "Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate". The Journal of Biological Chemistry. 274 (12): 8316–8321. doi:10.1074/jbc.274.12.8316. PMID 10075738.
  15. Ohanian J, Pieri M, Ohanian V (September 2015). "Non-receptor tyrosine kinases and the actin cytoskeleton in contractile vascular smooth muscle". The Journal of Physiology. 593 (17): 3807–3814. doi:10.1113/jphysiol.2014.284174. PMC 4575570. PMID 25433074.
  16. Kim-Kaneyama JR, Lei XF, Arita S, Miyauchi A, Miyazaki T, Miyazaki A (2012). "Hydrogen peroxide-inducible clone 5 (Hic-5) as a potential therapeutic target for vascular and other disorders". Journal of Atherosclerosis and Thrombosis. 19 (7): 601–607. doi:10.5551/jat.10736. PMID 22472216.
  17. Wang X, Yang Y, Guo X, Sampson ER, Hsu CL, Tsai MY, et al. (May 2002). "Suppression of androgen receptor transactivation by Pyk2 via interaction and phosphorylation of the ARA55 coregulator". The Journal of Biological Chemistry. 277 (18): 15426–15431. doi:10.1074/jbc.M111218200. PMID 11856738.
  18. He B, Minges JT, Lee LW, Wilson EM (March 2002). "The FXXLF motif mediates androgen receptor-specific interactions with coregulators". The Journal of Biological Chemistry. 277 (12): 10226–10235. doi:10.1074/jbc.M111975200. PMID 11779876.
  19. Carneiro AM, Ingram SL, Beaulieu JM, Sweeney A, Amara SG, Thomas SM, et al. (August 2002). "The multiple LIM domain-containing adaptor protein Hic-5 synaptically colocalizes and interacts with the dopamine transporter". The Journal of Neuroscience. 22 (16): 7045–7054. doi:10.1523/JNEUROSCI.22-16-07045.2002. PMC 6757888. PMID 12177201.
  20. Jia Y, Ransom RF, Shibanuma M, Liu C, Welsh MJ, Smoyer WE (October 2001). "Identification and characterization of hic-5/ARA55 as an hsp27 binding protein". The Journal of Biological Chemistry. 276 (43): 39911–39918. doi:10.1074/jbc.M103510200. PMID 11546764.
  21. Thomas SM, Hagel M, Turner CE (January 1999). "Characterization of a focal adhesion protein, Hic-5, that shares extensive homology with paxillin". Journal of Cell Science. 112 ( Pt 2) (2): 181–190. doi:10.1242/jcs.112.2.181. PMID 9858471.
  22. Nishiya N, Tachibana K, Shibanuma M, Mashimo JI, Nose K (August 2001). "Hic-5-reduced cell spreading on fibronectin: competitive effects between paxillin and Hic-5 through interaction with focal adhesion kinase". Molecular and Cellular Biology. 21 (16): 5332–5345. doi:10.1128/MCB.21.16.5332-5345.2001. PMC 87257. PMID 11463817.
  23. Nishiya N, Iwabuchi Y, Shibanuma M, Côté JF, Tremblay ML, Nose K (April 1999). "Hic-5, a paxillin homologue, binds to the protein-tyrosine phosphatase PEST (PTP-PEST) through its LIM 3 domain". The Journal of Biological Chemistry. 274 (14): 9847–9853. doi:10.1074/jbc.274.14.9847. PMID 10092676.
  24. Saygin D, Tabib T, Bittar HE, Valenzi E, Sembrat J, Chan SY, et al. (2010). "Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension". Pulmonary Circulation. 10 (1): 925–7. doi:10.1111/j.1755-3768.2010.4142.x. PMID 32166015. S2CID 85911512.
  25. "International Mouse Phenotyping Consortium".
  26. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, et al. (June 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  27. Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–263. doi:10.1038/474262a. PMID 21677718.
  28. Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. S2CID 18872015.
  29. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, et al. (July 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–464. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131.
  30. "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.