Gran icosaedro triámbico

En geometría, el gran icosaedro triámbico y el mediano icosaedro triámbico (o icosaedro triámbico medio) son dos poliedros uniformes duales entre sí, visualmente idénticos. La superficie exterior también representa la estelación De2f2 del icosaedro. Estas figuras se pueden diferenciar marcando qué intersecciones entre aristas son verdaderos vértices y cuáles no. En las imágenes de arriba, los vértices verdaderos están marcados por esferas doradas, que se pueden ver en las áreas cóncavas en forma de Y. Alternativamente, si las caras se rellenan según la regla par-impar, la estructura interna de ambas formas diferirá.

Gran icosaedro triámbico Mediano icosaedro triámbico
Tipos Poliedro uniforme dual
Grupo de simetríaIh
Nombre Gran icosaedro triámbicoMediano icosaedro triámbico
Índices de referenciaDU47, W34, 30/59DU41, W34, 30/59
ElementosF= 20, E= 60
V= 32 (χ= -8)
F= 20, E= 60
V= 24 (χ= -16)
Caras isoedrales
Duales
Gran icosidodecaedro ditrigonal

Dodecadodecaedro ditrigonal
Estelación
Icosaedro: W34

Diagrama de estelación
Modelo 3D del mediano icosaedro triámbico
Modelo 3D del gran icosaedro triámbico

Los 12 vértices de su envolvente convexa coinciden con la disposición de vértices de un icosaedro.

Gran icosaedro triámbico

El gran icosaedro triambico es el dual del gran icosidodecaedro ditrigonal, U47. Tiene 20 caras hexagonales invertidas (triambos), con una forma similar a la de una hélice de tres palas. Tiene 32 vértices (12 puntos exteriores y 20 ocultos en el interior), y un total 60 aristas.

Las caras tienen ángulos alternos de y . La suma de los seis ángulos es , y no como cabría esperar de un hexágono, porque el polígono gira alrededor de su centro dos veces. Su ángulo diedro es igual a .

Mediano icosaedro triámbico

El mediano icosaedro triambico es el dual del dodecadodecaedro ditrigonal, U41. Tiene 20 caras, cada una de las cuales es de forma cóncava simple isotoxal hexagonal o triámbica. Tiene 24 vértices (12 puntos exteriores y 12 ocultos en el interior), y un total de 60 aristas.

Las caras tienen ángulos alternos de y . Su ángulo diedro es igual a .

A diferencia del gran icosaedro triámbico, el mediano icosaedro triámbico es topológicamente un poliedro regular de índice dos.[1] Al distorsionar las formas triámbicas en hexágonos regulares, se obtiene como espacio cociente un teselado hexagonal de orden-5 hiperbólico:

Como una estelación

Es el modelo 34 de Magnus Wenninger, en cuya relación de poliedros figura como la novena estelación del icosaedro

Véase también

Referencias

  1. The Regular Polyhedra (of index two) Archivado el 4 de marzo de 2016 en Wayback Machine., David A. Richter

Bibliografía

Enlaces externos

Estelaciones notables del icosaedro
Regulares Duales uniformes Compuestos regulares Estrella regular Otros
Icosaedro (convexo) Pequeño icosaedro triámbico Mediano icosaedro triámbico Gran icosaedro triámbico Compuesto de cinco octaedros Compuesto de cinco tetraedros Compuesto de diez tetraedros Gran icosaedro Dodecaedro excavado Estelación final
El proceso de estelación en el icosaedro crea una serie de poliedros y compuestos relacionados con simetría icosaédrica
Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.