30,000

30,000 (thirty thousand) is the natural number that comes after 29,999 and before 30,001.

29999 30000 30001
Cardinalthirty thousand
Ordinal30000th
(thirty thousandth)
Factorization24 × 3 × 54
Greek numeral
Roman numeralXXX
Binary1110101001100002
Ternary11120110103
Senary3505206
Octal724608
Duodecimal1544012
Hexadecimal753016

Selected numbers in the range 30001–39999

30001 to 30999

31000 to 31999

32000 to 32999

33000 to 33999

  • 33333 = repdigit
  • 33461 = Pell number,[10] Markov number[11]
  • 33511 = square pyramidal number
  • 33781 = octahedral number[4]

34000 to 34999

35000 to 35999

36000 to 36999

  • 36100 = sum of the cubes of the first 19 positive integers
  • 36463 – number of parallelogram polyominoes with 14 cells[17]
  • 36594 = octahedral number[4]

37000 to 37999

38000 to 38999

  • 38024 = square pyramidal number
  • 38209 = n such that n | (3n + 5)[19]
  • 38416 = 144
  • 38807 = number of non-equivalent ways of expressing 10,000,000 as the sum of two prime numbers[20]
  • 38962 = Kaprekar number[21]

39000 to 39999

  • 39304 = 343
  • 39559 = octahedral number[4]
  • 39648 = tetranacci number[22]

Primes

There are 958 prime numbers between 30000 and 40000.

References

  1. "Sloane's A002110 : Primorial numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  2. "Sloane's A001599 : Harmonic or Ore numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  3. "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  4. "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  5. Weisstein, Eric W. "Prime Gaps". MathWorld.
  6. Sloane, N. J. A. (ed.). "Sequence A007530". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. "Sloane's A051015 : Zeisel numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  8. Sloane, N. J. A. (ed.). "Sequence A088959". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  10. "Sloane's A000129 : Pell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  11. "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  12. "Sloane's A000178 : Superfactorials". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  13. "Why was 34,969 Count von Count's magic number?". BBC News. 2012-08-30. Retrieved 2012-08-31.
  14. "Sloane's A000073 : Tribonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  15. "Sloane's A005165 : Alternating factorials". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  16. "Sloane's A195163 : 1000-gonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  17. Sloane, N. J. A. (ed.). "Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  18. "Sloane's A000682 : Semimeanders". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  19. Sloane, N. J. A. (ed.). "Sequence A277288 (Positive integers n such that n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  20. Sloane, N. J. A. (ed.). "Sequence A065577 (Number of Goldbach partitions of 10^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-08-31.
  21. "Sloane's A006886 : Kaprekar numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  22. "Sloane's A000078 : Tetranacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.