50,000
50,000 (fifty thousand) is the natural number that comes after 49,999 and before 50,001.
| ||||
---|---|---|---|---|
Cardinal | fifty thousand | |||
Ordinal | 50000th (fifty thousandth) | |||
Factorization | 24 × 55 | |||
Greek numeral | ||||
Roman numeral | L | |||
Unicode symbol(s) | ↇ | |||
Binary | 11000011010100002 | |||
Ternary | 21121202123 | |||
Senary | 10232526 | |||
Octal | 1415208 | |||
Duodecimal | 24B2812 | |||
Hexadecimal | C35016 |
Selected numbers in the range 50001–59999
50001 to 50999
- 50069 = 11 + 22 + 33 + 44 + 55 + 66
- 50400 = highly composite number[1]
- 50625 = 154, smallest fourth power that can be expressed as the sum of only five distinct fourth powers, palindromic in base 14 (1464114)
- 50653 = 373, palindromic in base 6 (10303016)
51000 to 51999
- 51076 = 2262, palindromic in base 15 (1020115)
- 51641 = Markov number[2]
- 51984 = 2282 = 373 + 113. the smallest square to the sum of only five distinct fourth powers.
52000 to 52999
- 52488 = 3-smooth number
- 52633 = Carmichael number[3]
53000 to 53999
- 53016 = pentagonal pyramidal number
- 53361 = 2312 sum of the cubes of the first 21 positive integers
54000 to 54999
- 54205 = Zeisel number[4]
- 54688 = 2-automorphic number[5]
- 54748 = narcissistic number[6]
- 54872 = 383, palindromic in base 9 (832389)
- 54901 = chiliagonal number[7]
55000 to 55999
- 55296 = 3-smooth number
- 55440 = superior highly composite number;[8] colossally abundant number[9]
- 55459 = one of five remaining Seventeen or Bust numbers in the Sierpinski problem
- 55555 = repdigit
- 55860 = harmonic divisor number[10]
- 55987 = repunit prime in base 6
56000 to 56999
- 56011 = Wedderburn-Etherington number[11]
- 56092 = the number of groups of order 256, see
- 56169 = 2372, palindromic in octal (155518)
- 56448 = pentagonal pyramidal number
57000 to 57999
- 57121 = 2392, palindromic in base 14 (16B6114)
58000 to 58999
- 58081 = 2412, palindromic in base 15 (1232115)
- 58367 = smallest integer that cannot be expressed as a sum of fewer than 1079 tenth powers
- 58786 = Catalan number[12]
- 58921 = Friedman prime
59000 to 59999
- 59049 = 2432 = 95 = 310
- 59051 = Friedman prime
- 59053 = Friedman prime
- 59081 = Zeisel number[4]
- 59263 = Friedman prime
- 59273 = Friedman prime
- 59319 = 393
- 59536 = 2442, palindromic in base 11 (4080411)
Primes
There are 924 prime numbers between 50000 and 60000.
References
- "Sloane's A002182 : Highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A002997 : Carmichael numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A051015 : Zeisel numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- Sloane, N. J. A. (ed.). "Sequence A030984 (2-automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-01.
- "Sloane's A005188 : Armstrong (or Plus Perfect, or narcissistic) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A195163 : 1000-gonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A001599 : Harmonic or Ore numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A001190 : Wedderburn-Etherington numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A00108 : Catalan numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.