Solar eclipse of March 29, 2006

A total solar eclipse occurred on March 29, 2006.[1][2] A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible from a narrow corridor which traversed half the Earth. The magnitude, that is, the ratio between the apparent sizes of the Moon and that of the Sun, was 1.052, and it was part of Saros 139.

Solar eclipse of March 29, 2006
Totality from Side, Turkey
Map
Type of eclipse
NatureTotal
Gamma0.3843
Magnitude1.0515
Maximum eclipse
Duration247 sec (4 m 7 s)
Coordinates23.2°N 16.7°E / 23.2; 16.7
Max. width of band184 km (114 mi)
Times (UTC)
(P1) Partial begin7:36:50
(U1) Total begin8:34:20
Greatest eclipse10:12:23
(U4) Total end11:47:55
(P4) Partial end12:45:35
References
Saros139 (29 of 71)
Catalog # (SE5000)9521

It was the second solar eclipse visible in Africa in just 6 months.

Visibility

Animated path

The path of totality of the Moon's shadow began at sunrise in Brazil and extended across the Atlantic to Africa, traveling across Ghana, the southeastern tip of Ivory Coast, Togo, Benin, Nigeria, Niger, Chad, Libya, and a small corner of northwest Egypt, from there across the Mediterranean Sea to Greece (Kastellórizo) and Turkey, then across the Black Sea via Georgia, Russia, and Kazakhstan to Western Mongolia, where it ended at sunset. A partial eclipse was seen from the much broader path of the Moon's penumbra, including the northern two-thirds of Africa, the whole of Europe, and Central Asia.

Observations

People around the world gathered in areas where the eclipse was visible to view the event. The Manchester Astronomical Society, the Malaysian Space Agency, the Astronomical Society of the Pacific, as well as dozens of tour groups met at the Apollo temple and the theater in Side, Turkey. The San Francisco Exploratorium featured a live webcast from the site, where thousands of observers were seated in the ancient, Roman-style theater.[3]

Almost all actively visited areas in the path of totality had perfect weather. Many observers reported an unusually beautiful eclipse, with many or all effects visible, and a very nice corona, despite the proximity to the solar minimum. The partial phase of the eclipse was also visible from the International Space Station, where the astronauts on board took spectacular pictures of the moon's shadow on Earth's surface. It initially appeared as though an orbit correction set for the middle of March would bring the ISS into the path of totality, but this correction was postponed.

Satellite failure

The satellite responsible for SKY Network Television, a New Zealand pay TV company, failed the day after this eclipse at around 1900 local time. While SKY didn't directly attribute the failure to the eclipse, they said in a media release that it took longer to resolve the issue because of it, but this claim was refuted by astronomers. The main reason for the failure was because of an aging and increasingly faulty satellite.[4]

Eclipses of 2006

This solar eclipse was preceded by the penumbral lunar eclipse on March 14, 2006.

Tzolkinex

Half-Saros

Tritos

Solar Saros 139

Inex

Solar eclipses 2004–2007

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

Solar eclipse series sets from 2004–2007
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 2004 April 19

Partial (south)
−1.13345 124 2004 October 14

Partial (north)
1.03481
129

Partial from Naiguatá
2005 April 08

Hybrid
−0.34733 134

Annular from Madrid, Spain
2005 October 03

Annular
0.33058
139

Total from Side, Turkey
2006 March 29

Total
0.38433 144

Partial from São Paulo, Brazil
2006 September 22

Annular
−0.40624
149

From Jaipur, India
2007 March 19

Partial (north)
1.07277 154

From Córdoba, Argentina
2007 September 11

Partial (south)
−1.12552

Saros 139

It is a part of saros series 139, repeating every 18 years, 11 days, 8 hours, containing 71 events. The series started with partial solar eclipse on May 17, 1501. It contains hybrid eclipses on August 11, 1627 through to December 9, 1825 and total eclipses from December 21, 1843 through to March 26, 2601. The series ends at member 71 as a partial eclipse on July 3, 2763. Its eclipses are entabulated in three columns; each one in the same column, every third eclipse, is one exeligmos apart so cast shadows over approximately the same parts of the Earth.

The solar eclipse of June 13, 2132 will be the longest total solar eclipse since July 11, 1991 at 6 minutes, 55.02 seconds.

The longest duration of totality will be produced by member 39 at 7 minutes, 29.22 seconds on July 16, 2186.[6] After that date each duration will decrease, until the series end. This date is the longest solar eclipse computed between 4000 BC and 6000 AD.[7] Saros series eclipses are during the Moon’s ascending node (a term related to our equator and polar-naming conventions).

Series members 24–45 occur between 1901 and 2300
24 25 26

February 3, 1916

February 14, 1934

February 25, 1952
27 28 29

March 7, 1970

March 18, 1988

March 29, 2006
30 31 32

April 8, 2024

April 20, 2042

April 30, 2060
33 34 35

May 11, 2078

May 22, 2096

June 3, 2114
36 37 38

June 13, 2132

June 25, 2150

July 5, 2168
39 40 41

July 16, 2186

July 27, 2204

August 8, 2222
42 43 44

August 18, 2240

August 29, 2258

September 9, 2276
45

September 20, 2294

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events, progressing from south to north between June 10, 1964, and August 21, 2036
June 10–11 March 27–29 January 15–16 November 3 August 21–22
117 119 121 123 125

June 10, 1964

March 28, 1968

January 16, 1972

November 3, 1975

August 22, 1979
127 129 131 133 135

June 11, 1983

March 29, 1987

January 15, 1991

November 3, 1994

August 22, 1998
137 139 141 143 145

June 10, 2002

March 29, 2006

January 15, 2010

November 3, 2013

August 21, 2017
147 149 151 153 155

June 10, 2021

March 29, 2025

January 14, 2029

November 3, 2032

August 21, 2036

Notes

  1. "Total solar eclipse: World witnesses rare event". Bristol Herald Courier. 2006-03-30. p. 4. Retrieved 2023-10-25 via Newspapers.com.
  2. "There goes the sun". The Toronto Star. 2006-03-30. p. 3. Retrieved 2023-10-25 via Newspapers.com.
  3. Total Solar Eclipse: Live from Turkey in 2006
  4. Press release by Sky TV. Solar eclipse interferes with satellite restoration Archived 2005-02-10 at the Wayback Machine Friday, 31 March 2006.
  5. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. Saros Series Catalog of Solar Eclipses NASA Eclipse Web Site.
  7. Ten Millennium Catalog of Long Solar Eclipses, −3999 to +6000 (4000 BCE to 6000 CE) Fred Espenak.

References

Photos:

Media related to Solar eclipse of 2006 March 29 at Wikimedia Commons

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.