Geobacter uraniireducens

Geobacter uraniireducens (more recently known as Geotalea uraniireducens[4]) is a gram-negative, rod-shaped, anaerobic, chemolithotrophic[5], mesophilic, and motile bacterium from the genus of Geobacter.[1][2][6][7] G. uraniireducens has been found to reduce iron and uranium[8][7][9] in sediment and soil[5]. It is being studied for use in bioremediation projects due to its ability to reduce uranium and arsenic.[10][11][12][13]

Geobacter uraniireducens
Scientific classification
Domain:
Bacteria
Phylum:
Class:
Order:
Family:
Genus:
Species:
G. uraniireducens
Binomial name
Geobacter uraniireducens
Shelobolina et al. 2008[1][2]
Type strain
ATCC BAA-1134, JCM 13001, Rf4[3]
Synonyms

Geotalea uraniireducens (Shelobolina et al. 2008) Waite et al. 2020

History

Geotalea uraniireducens was isolated from the subsurface sediment of a previous uranium ore processing facility undergoing uranium bioremediation in 2002.[12] This occurred during a field study by Robert Anderson and his associates at the Old Rifle in situ test plot area in Rifle, Colorado.[12] Shelobolina et al. (2008) further described the strain Rf4T[7] While Geobacter uraniireducens is the basonym, David Waite and associates reclassified it to the current preferred name, Geotalea uraniireducens in their 2020 paper.[4]

Characteristics

G. uraniireducens are gram negative bacteria that are motile rods with rounded ends and two to four long lateral flagellum, as well as pili and vesicles.[7]

Extracellular Electron Transport Strategies

The strategy of G. uraniireducens for extracellular electron transport (EET) is to facilitate iron (Fe(III)) oxide reduction via the production of a soluble electron shuttle.[14] It has been found that riboflavin mediates EET to reduce extracellular electron acceptors.[15] This is important because unlike in most Geobacter species, where conductive pili are critical for effective reduction of extracellular electron acceptors, the pili of G. uraniireducens are not conductive.[15]

Metabolic mechanisms

G. uraniireducens is an iron-reducing bacteria that uses acetate as an electron donor and reduces uranium (U(VI)).[7] In addition to Fe(III), it is also able to use Mn(IV), anthraquinone-2,6-disulfonate, malate and fumarate as electron acceptors.[7] As it uses Fe(III) oxide as the electron acceptor, it can oxidize acetate, lactate, pyruvate and ethanol as electron donors.[7]

Applications

Bioremediation

G. uraniireducens have been used in bioremediation studies in situ to decontaminate groundwater containing high levels of uranium from previous activities.[10][11][12] This process can be enhanced by using acetate to stimulate increased populations.[12]

Environmental Implications

One environmental implication of interest in G. uraniireducens is its arsenic (As(V)) reducing capabilities in subsurface sediments.[13] This ability is proposed to be due to gene encoding for respiratory arsenate reductase.[13]

See also

References

  1. Parte, A.C. "Geobacter". LPSN.
  2. "Geobacter uraniireducens". www.uniprot.org.
  3. "Geobacter uraniireducens Taxon Passport - StrainInfo". www.straininfo.net.
  4. Waite, David W; Chuvochina, Maria; Pelikan, Claus; Parks, Donovan H; Yilmaz, Pelin; Wagner, Michael; Loy, Alexander; Naganuma, Takeshi; Nakai, Ryosuke; Whitman, William B; Hahn, Martin W; Kuever, Jan; Hugenholtz, PhilipYR 2020 (2020). "Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities". International Journal of Systematic and Evolutionary Microbiology. 70 (11): 5972–6016. doi:10.1099/ijsem.0.004213. ISSN 1466-5034. PMID 33151140. S2CID 226257730.
  5. "IMG". img.jgi.doe.gov. Retrieved 2022-10-02.
  6. Parker, Charles Thomas; Wigley, Sarah; Garrity, George M (2009). Parker, Charles Thomas; Garrity, George M (eds.). "Nomenclature Abstract for Geobacter uraniireducens Shelobolina et al. 2008". The NamesforLife Abstracts. doi:10.1601/nm.13330.
  7. Shelobolina, Evgenya S.; Vrionis, Helen A.; Findlay, Robert H.; Lovley, Derek R.YR 2008 (2008). "Geobacter uraniireducens sp. nov., isolated from subsurface sediment undergoing uranium bioremediation". International Journal of Systematic and Evolutionary Microbiology. 58 (5): 1075–1078. doi:10.1099/ijs.0.65377-0. ISSN 1466-5034. PMID 18450691.
  8. Lovely, Derrick (2008-12-23). "Role of U(VI) Reduction by Geobacter species". doi:10.2172/944619. OSTI 944619. {{cite journal}}: Cite journal requires |journal= (help)
  9. "IMG". img.jgi.doe.gov. Retrieved 2022-10-02.
  10. Mouser, Paula J.; Holmes, Dawn E.; Perpetua, Lorrie A.; DiDonato, Raymond; Postier, Brad; Liu, Anna; Lovley, Derek R. (April 2009). "Quantifying expression of Geobacter spp. oxidative stress genes in pure culture and during in situ uranium bioremediation". The ISME Journal. 3 (4): 454–465. doi:10.1038/ismej.2008.126. ISSN 1751-7370. PMID 19129865. S2CID 30428402.
  11. Holmes, Dawn E.; O'Neil, Regina A.; Chavan, Milind A.; N'Guessan, Lucie A.; Vrionis, Helen A.; Perpetua, Lorrie A.; Larrahondo, M. Juliana; DiDonato, Raymond; Liu, Anna; Lovley, Derek R. (February 2009). "Transcriptome of Geobacter uraniireducens growing in uranium-contaminated subsurface sediments". The ISME Journal. 3 (2): 216–230. doi:10.1038/ismej.2008.89. ISSN 1751-7370. PMID 18843300. S2CID 6004360.
  12. Anderson, Robert T.; Vrionis, Helen A.; Ortiz-Bernad, Irene; Resch, Charles T.; Long, Philip E.; Dayvault, Richard; Karp, Ken; Marutzky, Sam; Metzler, Donald R.; Peacock, Aaron; White, David C.; Lowe, Mary; Lovley, Derek R. (October 2003). "Stimulating the In Situ Activity of Geobacter Species To Remove Uranium from the Groundwater of a Uranium-Contaminated Aquifer". Applied and Environmental Microbiology. 69 (10): 5884–5891. Bibcode:2003ApEnM..69.5884A. doi:10.1128/AEM.69.10.5884-5891.2003. ISSN 0099-2240. PMC 201226. PMID 14532040.
  13. Gault, Andrew G.; Héry, Marina; MacRae, Jean D. (2014-04-09), Stolz, John F.; Oremland, Ronald S. (eds.), "Microbial Transformations of Arsenic in the Subsurface", Microbial Metal and Metalloid Metabolism, Washington, DC, USA: ASM Press, pp. 77–90, doi:10.1128/9781555817190.ch5, ISBN 978-1-68367-101-5, retrieved 2022-09-26
  14. Tan, Yang; Adhikari, Ramesh Y.; Malvankar, Nikhil S.; Ward, Joy E.; Nevin, Kelly P.; Woodard, Trevor L.; Smith, Jessica A.; Snoeyenbos-West, Oona L.; Franks, Ashley E.; Tuominen, Mark T.; Lovley, Derek R. (2016). "The Low Conductivity of Geobacter uraniireducens Pili Suggests a Diversity of Extracellular Electron Transfer Mechanisms in the Genus Geobacter". Frontiers in Microbiology. 7: 980. doi:10.3389/fmicb.2016.00980. ISSN 1664-302X. PMC 4923279. PMID 27446021.
  15. Huang, Lingyan; Tang, Jiahuan; Chen, Man; Liu, Xing; Zhou, Shungui (2018). "Two Modes of Riboflavin-Mediated Extracellular Electron Transfer in Geobacter uraniireducens". Frontiers in Microbiology. 9: 2886. doi:10.3389/fmicb.2018.02886. ISSN 1664-302X. PMC 6277576. PMID 30538691.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.