Campylobacterota

Campylobacterota are a phylum of bacteria.[4] All species of this phylum are Gram-negative.

Campylobacterota
Campylobacter
Scientific classification
Domain: Bacteria
Phylum: Campylobacterota
Waite et al. 2021[1]
Classes
Synonyms
  • "Campylobacterota" Waite et al. 2018
  • "Epsilonbacteraeota" Waite et al. 2017[2]
  • "Epsilonproteobacteria" Garrity et al. 2006[3]

The Campylobacterota consist of few known genera, mainly the curved to spirilloid Wolinella spp., Helicobacter spp., and Campylobacter spp. Most of the known species inhabit the digestive tracts of animals and serve as symbionts (Wolinella spp. in cattle) or pathogens (Helicobacter spp. in the stomach, Campylobacter spp. in the duodenum). Many Campylobacterota are motile with flagella.[5]

Numerous environmental sequences and isolates of Campylobacterota have also been recovered from hydrothermal vents and cold seep habitats. Examples of isolates include Sulfurimonas autotrophica,[6] Sulfurimonas paralvinellae,[7] Sulfurovum lithotrophicum[8] and Nautilia profundicola.[9] A member of the phylum Campylobacterota occurs as an endosymbiont in the large gills of the deepwater sea snail Alviniconcha hessleri.[10]

The Campylobacterota found at deep-sea hydrothermal vents characteristically exhibit chemolithotrophy, meeting their energy needs by oxidizing reduced sulfur, formate, or hydrogen coupled to the reduction of nitrate or oxygen.[11] Autotrophic Campylobacterota use the reverse Krebs cycle to fix carbon dioxide into biomass, a pathway originally thought to be of little environmental significance. The oxygen sensitivity of this pathway is consistent with their microaerophilic or anaerobic niche in these environments, and their likely evolution in the Mesoproterozoic oceans,[12] which are thought to have been sulfidic with low levels of oxygen available from cyanobacterial photosynthesis.[13]

Phylogeny

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [14] and National Center for Biotechnology Information (NCBI)[15] and the phylogeny is based on 16S rRNA-based LTP release 106 by 'The All-Species Living Tree' Project[16]

Campylobacterota
  Nautiliaceae

Thioreductor micantisoli Nakagawa et al.2005

Caminibacter Alain et al.2002

Lebetimonas acidiphila Takai et al.2005

Nautilia Miroshnichenko et al.2002

Nitratiruptor tergarcus Nakagawa et al.2

  Campylobacterales

Hydrogenimonas thermophila Takai et al.2004

?Sulfuricurvum kujiense Kodama and Watanabe 2004

?Thiovulum majusHinze 1913

Nitratifractor salsuginis Nakagawa et al.2005

Sulfurovum lithotrophicum Inagaki et al.2004

Sulfurimonas Inagaki et al.2003 emend. Takai et al.2006

  Helicobacteraceae

Wolinella Tanner et al.1981

Helicobacter Goodwin et al.1989 emend. Vandamme et al.1991

  Campylobacteraceae

?Candidatus Thioturbo danicus Muyzer et al. 2005

Arcobacter Vandamme et al.1991 emend. Vandamme et al.1992

Sulfurospirillum Schumacher et al.1993 emend. Luijten et al.2003

Campylobacter Sebald and Véron 1963 emend. Vandamme et al.2010

Notes:

  • Prokaryotes where no pure (axenic) cultures are isolated or available, i.e. not cultivated or can not be sustained in culture for more than a few serial passages

References

  1. Oren A, Garrity GM (2021). "Valid publication of the names of forty-two phyla of prokaryotes". Int J Syst Evol Microbiol. 71 (10): 5056. doi:10.1099/ijsem.0.005056. PMID 34694987. S2CID 239887308.
  2. Waite, David W.; Vanwonterghem, Inka; Rinke, Christian; Parks, Donovan H.; Zhang, Ying; Takai, Ken; Sievert, Stefan M.; Simon, Jörg; Campbell, Barbara J.; Hanson, Thomas E.; Woyke, Tanja; Klotz, Martin G.; Hugenholtz, Philip (2017). "Comparative Genomic Analysis of the Class Epsilonproteobacteria and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.)". Frontiers in Microbiology. 8. doi:10.3389/fmicb.2017.00682. ISSN 1664-302X.
  3. Garrity GM, Bell JA, Lilburn T (2005). "Class V. Epsilonproteobacteria class. nov.". In Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds.). Bergey's Manual of Systematic Bacteriology. Vol.  2: The Proteobacteria Part C (The Alpha-, Beta-, Delta- and Epsilonproteobacteria (2nd ed.). Springer. p. 1145. doi:10.1002/9781118960608.cbm00044. ISBN 9781118960608.
  4. "www.ncbi.nlm.nih.gov". Retrieved 2009-03-19.
  5. Beeby, M (December 2015). "Motility in the epsilon-proteobacteria". Current Opinion in Microbiology. 28: 115–21. doi:10.1016/j.mib.2015.09.005. hdl:10044/1/27763. PMID 26590774.
  6. Inagaki, F. (2003-11-01). "Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing -proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough". International Journal of Systematic and Evolutionary Microbiology. 53 (6): 1801–1805. doi:10.1099/ijs.0.02682-0. ISSN 1466-5026. PMID 14657107.
  7. Takai, K. (2006-08-01). "Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas". International Journal of Systematic and Evolutionary Microbiology. 56 (8): 1725–1733. doi:10.1099/ijs.0.64255-0. ISSN 1466-5026. PMID 16901999.
  8. Inagaki, Fumio; Ken Takai; Kenneth H. Nealson; Koki Horikoshi (2004-09-01). "Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε-Proteobacteria isolated from Okinawa Trough hydrothermal sediments". International Journal of Systematic and Evolutionary Microbiology. 54 (5): 1477–1482. doi:10.1099/ijs.0.03042-0. ISSN 1466-5026. PMID 15388698.
  9. Julie L. Smith; Barbara J. Campbell; Thomas E. Hanson; Chuanlun L. Zhang; S. Craig Cary (2008). "Nautilia profundicola sp. nov., a thermophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents". International Journal of Systematic and Evolutionary Microbiology. 58 (7): 1598–1602. doi:10.1099/ijs.0.65435-0. PMID 18599701.
  10. Suzuki, Yohey; Sasaki, Takenori; Suzuki, Masae; Nogi, Yuichi; Miwa, Tetsuya; Takai, Ken; Nealson, Kenneth H.; Horikoshi, Koki (2005). "Novel Chemoautotrophic Endosymbiosis between a Member of the Epsilonproteobacteria and the Hydrothermal-Vent Gastropod Alviniconcha aff. hessleri (Gastropoda: Provannidae) from the Indian Ocean". Applied and Environmental Microbiology. 71 (9): 5440–5450. Bibcode:2005ApEnM..71.5440S. doi:10.1128/AEM.71.9.5440-5450.2005. PMC 1214688. PMID 16151136.
  11. Takai, Ken; et al. (2005). "Enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of Epsilonproteobacteria". Applied and Environmental Microbiology. 71 (11): 7310–7320. Bibcode:2005ApEnM..71.7310T. doi:10.1128/aem.71.11.7310-7320.2005. PMC 1287660. PMID 16269773.
  12. Campbell, Barbara J.; Engel, Annette Summers; Porter, Megan L.; Takai, Ken (2006-05-02). "The versatile ε-proteobacteria: key players in sulphidic habitats". Nature Reviews Microbiology. 4 (6): 458–468. doi:10.1038/nrmicro1414. ISSN 1740-1526. PMID 16652138. S2CID 10479314.
  13. Anbar, A. D.; A. H. Knoll (2002-08-16). "Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge?". Science. 297 (5584): 1137–1142. Bibcode:2002Sci...297.1137A. CiteSeerX 10.1.1.615.3041. doi:10.1126/science.1069651. PMID 12183619. S2CID 5578019.
  14. J.P. Euzéby. "Epsilonproteobacteria". List of Prokaryotic names with Standing in Nomenclature (LPSN). Archived from the original on 2011-10-07. Retrieved 2011-11-17.
  15. Sayers; et al. "Epsilonproteobacteria". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2011-06-05.
  16. 'The All-Species Living Tree' Project."16S rRNA-based LTP release 106 (full tree)" (PDF). Silva Comprehensive Ribosomal RNA Database. Archived from the original (PDF) on 2012-05-07. Retrieved 2011-11-17.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.