Éléments remarquables d'un triangle
Les éléments remarquables d'un triangle sont des points, droites ou cercles définis en relation avec ce triangle et possédant des propriétés géométriques remarquables.
Points remarquables
- Centre de gravité correspondant à l'isobarycentre des sommets et au point de concours des médianes
- Centre du cercle circonscrit ou point de concours des médiatrices
- Centre du cercle inscrit ou point de concours des bissectrices
- Centres des cercles exinscrits
- Orthocentre ou point de concours des hauteurs
- Centre du cercle d'Euler
- Points de Brocard
- Points de Feuerbach
- Point de Fermat ou Point de Torricelli
- Point de Miquel
- Point de Gergonne
- Point de Nagel
- Point de Vecten
- Points isogonaux
- Point de Lemoine
- Points de Terquem
- Point de Spieker
- Point d’Apollonius
- Mittenpunkt
Droites remarquables
Cercles remarquables
Triangles remarquables
Courbes remarquables
- Coniques circonscrites et inscrites à un triangle
- Parabole tritangente
- Ellipse de Mandart
- Ellipse de Steiner
- Ellipse de Brocard
- Ellipse de Lemoine
- Hyperbole de Kiepert
- Parabole de Kiepert
- Conique inscrite de Serret (ou de MacBeath)
- Conique orthique
- cubiques
- Deltoïde de Steiner
Article connexe
Bibliographie
- Jean-Denis Eiden, Géométrie analytique classique, Calvage & Mounet, 2009 (ISBN 978-2-91-635208-4)
- Portail de la géométrie
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.