JARID2

Protein Jumonji is a protein that in humans is encoded by the JARID2 gene.[5][6] JARID2 is a member of the alpha-ketoglutarate-dependent hydroxylase superfamily.

JARID2
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesJARID2, JMJ, jumonji and AT-rich interaction domain containing 2
External IDsOMIM: 601594 MGI: 104813 HomoloGene: 31279 GeneCards: JARID2
Orthologs
SpeciesHumanMouse
Entrez

3720

16468

Ensembl

ENSG00000008083

ENSMUSG00000038518

UniProt

Q92833

Q62315

RefSeq (mRNA)

NM_001267040
NM_004973

NM_001205043
NM_001205044
NM_021878
NM_001360281

RefSeq (protein)

NP_001253969
NP_004964

NP_001191972
NP_001191973
NP_068678
NP_001347210

Location (UCSC)Chr 6: 15.25 – 15.52 MbChr 13: 44.88 – 45.08 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Jarid2 (jumonji, AT rich interactive domain 2) is a protein coding gene that functions as a putative transcription factor. Distinguished as a nuclear protein necessary for mouse embryogenesis, Jarid2 is a member of the jumonji family that contains a DNA binding domain known as the AT-rich interaction domain (ARID).[7][8][9][10] In vitro studies of Jarid2 reveal that ARID along with other functional domains are involved in DNA binding, nuclear localization, transcriptional repression,[11] and recruitment of Polycomb-repressive complex 2 (PRC2).[12][13] Intracellular mechanisms underlying these interactions remain largely unknown.

In search of developmentally important genes, Jarid2 has previously been identified by gene trap technology as an important factor necessary for organ development.[7][11][14] During mouse organogenesis, Jarid2 is involved in the formation of the neural tube and development of the liver, spleen, thymus and cardiovascular system.[15][16] Continuous Jarid2 expression in the tissues of the heart, highlight its presiding role in the development of both the embryonic and the adult heart.[7] Mutant models of Jarid2 embryos show severe heart malformations, ventricular septal defects, noncompaction of the ventricular wall, and atrial enlargement.[7] Homozygous mutants of Jarid2 are found to die soon after birth.[7] Overexpression of the mouse Jarid2 gene has been reported to repress cardiomyocyte proliferation through it close interaction with retinoblastoma protein (Rb), a master cell cycle regulator.[11][14][17] Retinoblastoma-binding protein-2 and the human SMCX protein share regions of homology between mice and humans.[5]

Model organisms

Jarid2 knockout mouse phenotype
CharacteristicPhenotype
Homozygote viabilityAbnormal
Recessive lethal studyAbnormal
FertilityNormal
Body weightNormal
AnxietyNormal
Neurological assessmentNormal
Grip strengthNormal
Hot plateNormal
DysmorphologyNormal
Indirect calorimetryNormal
Glucose tolerance testNormal
Auditory brainstem responseNormal
DEXANormal
RadiographyNormal
Body temperatureNormal
Eye morphologyNormal
Clinical chemistryNormal
Plasma immunoglobulinsNormal
HaematologyNormal
Peripheral blood lymphocytesNormal
Micronucleus testNormal
Heart weightNormal
Skin HistopathologyNormal
Brain histopathologyNormal
Salmonella infectionNormal[18]
Citrobacter infectionNormal[19]
All tests and analysis from[20][21]

Model organisms have been used in the study of JARID2 function. A conditional knockout mouse line, called Jarid2tm1a(KOMP)Wtsi[22][23] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the Wellcome Trust Sanger Institute.[24][25][26]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[20][27] Twenty six tests were carried out and two phenotypes were reported. Homozygous mutant embryos were identified during gestation but almost half showed signs of oedema, and in a separate study, only 1% survived until weaning (significantly less than the Mendelian ratio). The remaining tests were carried out on heterozygous mutant adult mice; no significant abnormalities were observed in these animals.[20]

References

  1. GRCh38: Ensembl release 89: ENSG00000008083 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000038518 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Berge-Lefranc JL, Jay P, Massacrier A, Cau P, Mattei MG, Bauer S, Marsollier C, Berta P, Fontes M (Feb 1997). "Characterization of the human jumonji gene". Hum Mol Genet. 5 (10): 1637–41. doi:10.1093/hmg/5.10.1637. PMID 8894700.
  6. "Entrez Gene: JARID2 jumonji, AT rich interactive domain 2".
  7. Kim TG, Kraus JC, Chen J, Lee Y (2004). "Jumonji, a critical factor for cardiac development, functions as a transcriptional repressor". J. Biol. Chem. 278 (43): 42247–55. doi:10.1074/jbc.M307386200. PMID 12890668.
  8. Mysliwiec MR, Kim TG, Lee Y (2007). "Characterization of zinc finger protein 496 that interacts with jumonji/jarid2". FEBS Letters. 581 (14): 2633–40. doi:10.1016/j.febslet.2007.05.006. PMC 2002548. PMID 17521633.
  9. Takahashi M, Kojima M, Nakajima K, Suzuki-Migishima R, Motegi Y, Yokoyama M, Takeuchi, T (2004). "Cardiac abnormalities cause early lethality of jumonji mutant mice". Biochemical and Biophysical Research Communications. 324 (4): 1319–23. doi:10.1016/j.bbrc.2004.09.203. PMID 15504358.
  10. Toyoda M, Kojima M, Takeuchi T (2000). "Jumonji is a nuclear protein that participates in the negative regulation of cell growth". Biochemical and Biophysical Research Communications. 274 (2): 332–6. doi:10.1006/bbrc.2000.3138. PMID 10913339.
  11. Klassen SS, Rabkin SW (2008). "Nitric oxide induces gene expression of jumonji and retinoblastoma 2 protein while reducing expression of atrial natriuretic peptide precursor type B in cardiomyocytes". Folia Biologica. 54 (2): 65–70. PMID 18498724.
  12. Pasini D, Cloos PA, Walfridsson J, Olsson L, Bukowski JP, Johansen JV, Helin K (2010). "JARID2 regulates binding of the polycomb repressive complex 2 to target genes in ES cells". Nature. 464 (7286): 306–10. Bibcode:2010Natur.464..306P. doi:10.1038/nature08788. PMID 20075857. S2CID 205219740.
  13. Son J, Shen SS, Margueron R, Reinberg D (2013). "Nucleosome-binding activities within JARID2 and EZH1 regulate the function of PRC2 on chromatin". Genes & Development. 27 (24): 2663–77. doi:10.1101/gad.225888.113. PMC 3877756. PMID 24352422.
  14. Jung J, Mysliwiec MR, Lee Y (2005). "Roles of Jumonji in mouse embryonic development". Developmental Dynamics. 232 (1): 21–32. doi:10.1002/dvdy.20204. PMID 15580614. S2CID 31338749.
  15. Motoyama J, Kitajima K, Kojima M, Kondo S, Takeuchi T (1997). "Organogenesis of the liver, thymus and spleen is affected in jumonji mutant mice". Mechanisms of Development. 66 (1–2): 27–37. doi:10.1016/s0925-4773(97)00082-8. PMID 9376320. S2CID 6531281.
  16. Takeuchi T, Yamazaki Y, Katoh-Fukui Y, Tsuchiya R, Kondo S, Motoyama J, Higashinakagawa T (1995). "Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation". Genes & Development. 9 (10): 1211–22. doi:10.1101/gad.9.10.1211. PMID 7758946.
  17. Mysliwiec MR, Chen J, Powers PA, Bartley CR, Schneider MD, Lee Y (2000). "Generation of a conditional null allele of jumonji". Genesis. 44 (9): 407–11. doi:10.1002/dvg.20221. PMC 2002517. PMID 16900512.
  18. "Salmonella infection data for Jarid2". Wellcome Trust Sanger Institute.
  19. "Citrobacter infection data for Jarid2". Wellcome Trust Sanger Institute.
  20. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88 (S248). doi:10.1111/j.1755-3768.2010.4142.x. S2CID 85911512.
  21. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  22. "International Knockout Mouse Consortium".
  23. "Mouse Genome Informatics".
  24. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  25. Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  26. Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. S2CID 18872015.
  27. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.