WAY-100635

WAY-100635 is a piperazine drug and research chemical widely used in scientific studies. It was originally believed to act as a selective 5-HT1A receptor antagonist, but subsequent research showed that it also acts as potent full agonist at the D4 receptor.[1][2][3] It is sometimes referred to as a silent antagonist at the former receptor.[4] It is closely related to WAY-100135.

WAY-100635
Identifiers
  • N-[2-[4-(2-Methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridyl)cyclohexanecarboxamide
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC25H34N4O2
Molar mass422.573 g·mol−1
3D model (JSmol)
  • COC1=CC=CC=C1N2CCN(CC2)CCN(C3=CC=CC=N3)C(=O)C4CCCCC4
  • InChI=1S/C25H34N4O2/c1-31-23-12-6-5-11-22(23)28-18-15-27(16-19-28)17-20-29(24-13-7-8-14-26-24)25(30)21-9-3-2-4-10-21/h5-8,11-14,21H,2-4,9-10,15-20H2,1H3 ☒N
  • Key:SBPRIAGPYFYCRT-UHFFFAOYSA-N ☒N
 ☒NcheckY (what is this?)  (verify)

In light of its only recently discovered dopaminergic activity, conclusions drawn from studies that employed WAY-100635 as a selective 5-HT1A antagonist may need to be re-evaluated.[5]

Human PET studies

In human PET studies WAY-100635 shows high binding in the cerebral cortex, hippocampus, raphe nucleus and amygdaloid nucleus, while lower in thalamus and basal ganglia.[6] One study described a single case with relatively high binding in the cerebellum.[7]

In relating its binding to subject variables one Swedish study found WAY-100635 binding in raphe brain region correlating with self-transcendence and spiritual acceptance personality traits.[8] WAY-100635 binding has also been assessed in connection with clinical depression, where there has been disagreement about the presence and direction of the 5-HT1A receptor binding.[9] In healthy subjects WAY-100635 binding has been found to decline with age,[10] though not all studies have found this relationship.[11][12]

Human WAY-100635 binding neuroimaging studies (patients compared to healthy control subjects).
WhatResultSubjectsRef.
Age Global decrease and particularly in parietal cortex and dorsolateral prefrontal cortex 19 [10]
Age No correlation found 61 [11]
Age No correlation detected 25 [12]
Sex Higher binding in females 25 [12]
TCI self-transcendence and spiritual acceptance personality traits Positive correlation in raphe region 15 males [8]
Lifetime aggression Negative correlation 25 [12]
MADAM binding potential (serotonin transporter binding) Positive correlation in the raphe nuclei and hippocampus 12 males [13]
Genetic variationResultSubjectsRef.
HTR1A.(-1018)C>G polymorphism No difference found 35 [14]
SERT.5-HTTLPR polymorphism Lower binding in "all brain regions" for SS or SL genotypes compared to LL 35 [14]
DiseaseResultSubjectsRef.
Depressive (with primary, recurrent, familial mood disorders) Reduction in raphe nucleus and mesiotemporal cortex 12+8 [15]
Major depressive disorder (medicated and unmedicated) Reduction in "many of the regions examined" 25+18 [16]
Panic disorder in treated and untreated patients Reducing in binding in raphe in both treated and untreated. Reduced binding in global postsynaptic regions for untreated, while no or little reduction for treated. 9+7+19 [17]
Alzheimer disease Decrease in right medial temporal cortex 10+10 [18]

Radioligands

Labeled with the radioisotope carbon-11 it is used as a radioligand in positron emission tomography (PET) studies to determine neuroreceptor binding in the brain.[19] WAY-100635 may be labeled in different ways with carbon-11: As [carbonyl-11C]WAY-100635 or [O-methyl-11C]WAY-100635, with [carbonyl-11C]WAY-100635 regarded as "far superior".[20] Labeled with tritium WAY-100635 may also be used in autoradiography.[21] WAY-100635 has higher 5-HT1A affinity than 8-OH-DPAT.[22]

Other actions

WAY-100635 has also been found to increase the analgesic effects of opioid drugs in a dose-dependent manner, in contrast to 5-HT1A agonists such as 8-OH-DPAT which were found to reduce opioid analgesia.[23][24] However, since 5-HT1A agonists were also found to reduce opioid-induced respiratory depression and WAY-100635 was found to block this effect,[25] it is likely that 5-HT1A antagonists might worsen this side effect of opioids. Paradoxically, chronic administration of the very high efficacy 5-HT1A agonist befiradol results in potent analgesia following an initial period of hyperalgesia, an effect most likely linked to desensitisation and/or downregulation of 5-HT1A receptors (i.e. analogous to a 5-HT1A antagonist-like effect).[26][27][28] As with other 5-HT1A silent antagonists such as UH-301 and robalzotan, WAY-100635 can also induce a head-twitch response in rodents.[29]

See also

  • Vesa Oikonen (2007). "Quantification of (carbonyl-11C)WAY-100635 PET studies". Turku PET center.

References

  1. Fornal CA, Metzler CW, Gallegos RA, Veasey SC, McCreary AC, Jacobs BL (August 1996). "WAY-100635, a potent and selective 5-hydroxytryptamine1A antagonist, increases serotonergic neuronal activity in behaving cats: comparison with (S)-WAY-100135". The Journal of Pharmacology and Experimental Therapeutics. 278 (2): 752–762. PMID 8768728.
  2. Chemel BR, Roth BL, Armbruster B, Watts VJ, Nichols DE (October 2006). "WAY-100635 is a potent dopamine D4 receptor agonist". Psychopharmacology. 188 (2): 244–251. doi:10.1007/s00213-006-0490-4. PMID 16915381. S2CID 24194034.
  3. Marona-Lewicka D, Nichols DE (February 2009). "WAY 100635 produces discriminative stimulus effects in rats mediated by dopamine D(4) receptor activation". Behavioural Pharmacology. 20 (1): 114–118. doi:10.1097/FBP.0b013e3283242f1a. PMID 19179855. S2CID 43332577.
  4. Fletcher A, Forster EA, Bill DJ, Brown G, Cliffe IA, Hartley JE, et al. (1996). "Electrophysiological, biochemical, neurohormonal and behavioural studies with WAY-100635, a potent, selective and silent 5-HT1A receptor antagonist". Behavioural Brain Research. 73 (1–2): 337–353. doi:10.1016/0166-4328(96)00118-0. PMID 8788530. S2CID 18229202.
  5. Chemel BR, Roth BL, Armbruster B, Watts VJ, Nichols DE (October 2006). "WAY-100635 is a potent dopamine D4 receptor agonist". Psychopharmacology. 188 (2): 244–251. doi:10.1007/s00213-006-0490-4. PMID 16915381. S2CID 24194034.
  6. Ito H, Halldin C, Farde L (January 1999). "Localization of 5-HT1A receptors in the living human brain using [carbonyl-11C]WAY-100635: PET with anatomic standardization technique". Journal of Nuclear Medicine. 40 (1): 102–109. PMID 9935065.
  7. Hirvonen J, Kajander J, Allonen T, Oikonen V, Någren K, Hietala J (January 2007). "Measurement of serotonin 5-HT1A receptor binding using positron emission tomography and [carbonyl-(11)C]WAY-100635-considerations on the validity of cerebellum as a reference region". Journal of Cerebral Blood Flow and Metabolism. 27 (1): 185–195. doi:10.1038/sj.jcbfm.9600326. PMID 16685258.
  8. Borg J, Andrée B, Soderstrom H, Farde L (November 2003). "The serotonin system and spiritual experiences". The American Journal of Psychiatry. 160 (11): 1965–1969. doi:10.1176/appi.ajp.160.11.1965. PMID 14594742. S2CID 5911066.
  9. Drevets WC, Thase ME, Moses-Kolko EL, Price J, Frank E, Kupfer DJ, Mathis C (October 2007). "Serotonin-1A receptor imaging in recurrent depression: replication and literature review". Nuclear Medicine and Biology. 34 (7): 865–877. doi:10.1016/j.nucmedbio.2007.06.008. PMC 2702715. PMID 17921037.
  10. Tauscher J, Verhoeff NP, Christensen BK, Hussey D, Meyer JH, Kecojevic A, et al. (May 2001). "Serotonin 5-HT1A receptor binding potential declines with age as measured by [11C]WAY-100635 and PET". Neuropsychopharmacology. 24 (5): 522–530. doi:10.1016/S0893-133X(00)00227-X. PMID 11282252.
  11. Rabiner EA, Messa C, Sargent PA, Husted-Kjaer K, Montgomery A, Lawrence AD, et al. (March 2002). "A database of [(11)C]WAY-100635 binding to 5-HT(1A) receptors in normal male volunteers: normative data and relationship to methodological, demographic, physiological, and behavioral variables". NeuroImage. 15 (3): 620–632. doi:10.1006/nimg.2001.0984. PMID 11848705. S2CID 42080193.
  12. Parsey RV, Oquendo MA, Simpson NR, Ogden RT, Van Heertum R, Arango V, Mann JJ (November 2002). "Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using [C-11]WAY-100635". Brain Research. 954 (2): 173–182. doi:10.1016/S0006-8993(02)03243-2. PMID 12414100. S2CID 20650203.
  13. Lundberg J, Borg J, Halldin C, Farde L (December 2007). "A PET study on regional coexpression of 5-HT1A receptors and 5-HTT in the human brain". Psychopharmacology. 195 (3): 425–433. doi:10.1007/s00213-007-0928-3. PMID 17874074. S2CID 22272672.
  14. David SP, Murthy NV, Rabiner EA, Munafó MR, Johnstone EC, Jacob R, et al. (March 2005). "A functional genetic variation of the serotonin (5-HT) transporter affects 5-HT1A receptor binding in humans". The Journal of Neuroscience. 25 (10): 2586–2590. doi:10.1523/JNEUROSCI.3769-04.2005. PMC 1942077. PMID 15758168.
  15. Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, et al. (November 1999). "PET imaging of serotonin 1A receptor binding in depression". Biological Psychiatry. 46 (10): 1375–1387. doi:10.1016/S0006-3223(99)00189-4. PMID 10578452. S2CID 719822.
  16. Sargent PA, Kjaer KH, Bench CJ, Rabiner EA, Messa C, Meyer J, et al. (February 2000). "Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment". Archives of General Psychiatry. 57 (2): 174–180. doi:10.1001/archpsyc.57.2.174. PMID 10665620.
  17. Nash JR, Sargent PA, Rabiner EA, Hood SD, Argyropoulos SV, Potokar JP, et al. (September 2008). "Serotonin 5-HT1A receptor binding in people with panic disorder: positron emission tomography study". The British Journal of Psychiatry. 193 (3): 229–234. doi:10.1192/bjp.bp.107.041186. PMID 18757983.
  18. Lanctôt KL, Hussey DF, Herrmann N, Black SE, Rusjan PM, Wilson AA, et al. (October 2007). "A positron emission tomography study of 5-hydroxytryptamine-1A receptors in Alzheimer disease". The American Journal of Geriatric Psychiatry. 15 (10): 888–898. doi:10.1097/JGP.0b013e3180488325. PMID 17567932.
  19. Pike VW, McCarron JA, Lammerstma AA, Hume SP, Poole K, Grasby PM, et al. (September 1995). "First delineation of 5-HT1A receptors in human brain with PET and [11C]WAY-100635". European Journal of Pharmacology. 283 (1–3): R1–R3. doi:10.1016/0014-2999(95)00438-Q. PMID 7498295.
  20. Pike VW, McCarron JA, Lammertsma AA, Osman S, Hume SP, Sargent PA, et al. (April 1996). "Exquisite delineation of 5-HT1A receptors in human brain with PET and [carbonyl-11 C]WAY-100635". European Journal of Pharmacology. 301 (1–3): R5–R7. doi:10.1016/0014-2999(96)00079-9. PMID 8773468.
  21. Hume SP, Ashworth S, Opacka-Juffry J, Ahier RG, Lammertsma AA, Pike VW, et al. (December 1994). "Evaluation of [O-methyl-3H]WAY-100635 as an in vivo radioligand for 5-HT1A receptors in rat brain". European Journal of Pharmacology. 271 (2–3): 515–523. doi:10.1016/0014-2999(94)90813-3. PMID 7705452.
  22. Burnet PW, Eastwood SL, Harrison PJ (June 1997). "[3H]WAY-100635 for 5-HT1A receptor autoradiography in human brain: a comparison with [3H]8-OH-DPAT and demonstration of increased binding in the frontal cortex in schizophrenia". Neurochemistry International. 30 (6): 565–574. doi:10.1016/S0197-0186(96)00124-6. PMID 9152998. S2CID 21135585.
  23. Bardin L, Colpaert FC (June 2004). "Role of spinal 5-HT(1A) receptors in morphine analgesia and tolerance in rats". European Journal of Pain. 8 (3): 253–261. doi:10.1016/j.ejpain.2003.09.002. PMID 15109976. S2CID 25580572.
  24. Berrocoso E, De Benito MD, Mico JA (July 2007). "Role of serotonin 5-HT1A and opioid receptors in the antiallodynic effect of tramadol in the chronic constriction injury model of neuropathic pain in rats". Psychopharmacology. 193 (1): 97–105. doi:10.1007/s00213-007-0761-8. PMID 17393145. S2CID 21898521.
  25. Sahibzada N, Ferreira M, Wasserman AM, Taveira-DaSilva AM, Gillis RA (February 2000). "Reversal of morphine-induced apnea in the anesthetized rat by drugs that activate 5-hydroxytryptamine(1A) receptors". The Journal of Pharmacology and Experimental Therapeutics. 292 (2): 704–713. PMID 10640309.
  26. Bardin L, Assié MB, Pélissou M, Royer-Urios I, Newman-Tancredi A, Ribet JP, et al. (March 2005). "Dual, hyperalgesic, and analgesic effects of the high-efficacy 5-hydroxytryptamine 1A (5-HT1A) agonist F 13640 [(3-chloro-4-fluoro-phenyl)-[4-fluoro-4-{[(5-methyl-pyridin-2-ylmethyl)-amino]-methyl}piperidin-1-yl]methanone, fumaric acid salt]: relationship with 5-HT1A receptor occupancy and kinetic parameters". The Journal of Pharmacology and Experimental Therapeutics. 312 (3): 1034–1042. doi:10.1124/jpet.104.077669. PMID 15528450. S2CID 42446435.
  27. Assié MB, Lomenech H, Ravailhe V, Faucillon V, Newman-Tancredi A (September 2006). "Rapid desensitization of somatodendritic 5-HT1A receptors by chronic administration of the high-efficacy 5-HT1A agonist, F13714: a microdialysis study in the rat". British Journal of Pharmacology. 149 (2): 170–178. doi:10.1038/sj.bjp.0706859. PMC 2013794. PMID 16921393.
  28. Buritova J, Berrichon G, Cathala C, Colpaert F, Cussac D (February 2009). "Region-specific changes in 5-HT1A agonist-induced Extracellular signal-Regulated Kinases 1/2 phosphorylation in rat brain: a quantitative ELISA study". Neuropharmacology. 56 (2): 350–361. doi:10.1016/j.neuropharm.2008.09.004. PMID 18809418. S2CID 45068116.
  29. Fox MA, Stein AR, French HT, Murphy DL. Functional interactions between 5-HT2A and presynaptic 5-HT1A receptor-based responses in mice genetically deficient in the serotonin 5-HT transporter (SERT). Br J Pharmacol. 2010 Feb;159(4):879-87. Fox MA, Stein AR, French HT, Murphy DL (February 2010). "Functional interactions between 5-HT2A and presynaptic 5-HT1A receptor-based responses in mice genetically deficient in the serotonin 5-HT transporter (SERT)". British Journal of Pharmacology. 159 (4): 879–887. doi:10.1111/j.1476-5381.2009.00578.x. PMC 2829213. PMID 20128812.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.