B vitamins

B vitamins are a class of water-soluble vitamins that play important roles in cell metabolism and synthesis of red blood cells.[1] Though these vitamins share similar names (B1, B2, B3, etc.), they are chemically distinct compounds that often coexist in the same foods.[1] In general, dietary supplements containing all eight are referred to as a vitamin B complex. Individual B vitamin supplements are referred to by the specific number or name of each vitamin, such as B1 for thiamine, B2 for riboflavin, and B3 for niacin.[1] Some are more commonly recognized by name than by number: niacin, pantothenic acid, biotin and folate.

Each B vitamin is either a cofactor (generally a coenzyme) for key metabolic processes or is a precursor needed to make one and is thus an essential nutrient.

List of B vitamins

List of B vitamins
Vitamin Name Description
Vitamin B1 Thiamine A coenzyme in the catabolism of sugars and amino acids.
Vitamin B2 Riboflavin A precursor of coenzymes called FAD and FMN, which are needed for flavoprotein enzyme reactions, including activation of other vitamins
Vitamin B3 Niacin (nicotinic acid) A precursor of coenzymes called NAD and NADP, which are needed in many metabolic processes.
Nicotinamide
Nicotinamide riboside
Vitamin B5 Pantothenic acid A precursor of coenzyme A and therefore needed to metabolize many molecules.
Vitamin B6 Pyridoxine A coenzyme in many enzymatic reactions in metabolism.
Pyridoxal
Pyridoxamine
Vitamin B7 Biotin A coenzyme for carboxylase enzymes, needed for synthesis of fatty acids and in gluconeogenesis.
Vitamin B9 Folate A precursor needed to make, repair, and methylate DNA; a cofactor in various reactions; especially important in aiding rapid cell division and growth, such as in infancy and pregnancy.
Vitamin B12 Cobalamins Commonly cyanocobalamin or methylcobalamin in vitamin supplements. A coenzyme involved in the metabolism of every cell of the human body, especially affecting DNA synthesis and regulation, but also fatty acid metabolism and amino acid metabolism.

Note: other substances once thought to be vitamins were given numbers in the B-vitamin numbering scheme, but were subsequently discovered to be either not essential for life or manufactured by the body, thus not meeting the two essential qualifiers for a vitamin. See section #Related compounds for numbers 4, 8, 10, 11, and others.

Sources

B vitamins are found in highest abundance in meat, eggs, and dairy products.[1] Processed carbohydrates such as sugar and white flour tend to have lower B vitamin than their unprocessed counterparts. For this reason, it is required by law in many countries (including the United States) that the B vitamins thiamine, riboflavin, niacin, and folic acid be added back to white flour after processing. This is referred to as "enriched flour" on food labels. B vitamins are particularly concentrated in meat such as turkey, tuna and liver.[2]

Sources for B vitamins also include legumes (pulses or beans), whole grains, potatoes, bananas, chili peppers, tempeh, nutritional yeast, brewer's yeast, and molasses. Although the yeast used to make beer results in beers being a source of B vitamins,[3] their bioavailability ranges from poor to negative as drinking ethanol inhibits absorption of thiamine (B1),[4][5] riboflavin (B2),[6] niacin (B3),[7] biotin (B7),[8] and folic acid (B9).[9][10] In addition, each of the preceding studies further emphasizes that elevated consumption of beer and other alcoholic beverages results in a net deficit of those B vitamins and the health risks associated with such deficiencies.

The B12 vitamin is not abundantly available from plant products,[11] making B12 deficiency a legitimate concern for vegans. Manufacturers of plant-based foods will sometimes report B12 content, leading to confusion about what sources yield B12. The confusion arises because the standard US Pharmacopeia (USP) method for measuring the B12 content does not measure the B12 directly. Instead, it measures a bacterial response to the food. Chemical variants of the B12 vitamin found in plant sources are active for bacteria, but cannot be used by the human body. This same phenomenon can cause significant over-reporting of B12 content in other types of foods as well.[12]

A common way to increase vitamin B intake is by using dietary supplements. B vitamins are commonly added to energy drinks, many of which have been marketed with large amounts of B vitamins.[13]

Because they are soluble in water, excess B vitamins are generally readily excreted, although individual absorption, use and metabolism may vary.[13] The elderly and athletes may need to supplement their intake of B12 and other B vitamins due to problems in absorption and increased needs for energy production. In cases of severe deficiency, B vitamins, especially B12, may also be delivered by injection to reverse deficiencies.[14] Both type 1 and type 2 diabetics may also be advised to supplement thiamine based on high prevalence of low plasma thiamine concentration and increased thiamine clearance associated with diabetes.[15] Also, Vitamin B9 (folic acid) deficiency in early embryo development has been linked to neural tube defects. Thus, women planning to become pregnant are usually encouraged to increase daily dietary folic acid intake and/or take a supplement.[16]

Molecular functions

Vitamin Name Structure Molecular Function
Vitamin B1 Thiamine
Thiamine plays a central role in the release of energy from carbohydrates. It is involved in RNA and DNA production, as well as nerve function. Its active form is a coenzyme called thiamine pyrophosphate (TPP), which takes part in the conversion of pyruvate to acetyl coenzyme A in metabolism.[17]
Vitamin B2 Riboflavin
Riboflavin is involved in release of energy in the electron transport chain, the citric acid cycle, as well as the catabolism of fatty acids (beta oxidation).[18]
Vitamin B3 Niacin
Niacin is composed of two structures: nicotinic acid and nicotinamide. There are two co-enzyme forms of niacin: nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). Both play an important role in energy transfer reactions in the metabolism of glucose, fat and alcohol.[19] NAD carries hydrogens and their electrons during metabolic reactions, including the pathway from the citric acid cycle to the electron transport chain. NADP is a coenzyme in lipid and nucleic acid synthesis.[20]
Vitamin B5 Pantothenic acid
Pantothenic acid is involved in the oxidation of fatty acids and carbohydrates. Coenzyme A, which can be synthesised from pantothenic acid, is involved in the synthesis of amino acids, fatty acids, ketone bodies, cholesterol,[21] phospholipids, steroid hormones, neurotransmitters (such as acetylcholine), and antibodies.[22]
Vitamin B6 Pyridoxine, pyridoxal, pyridoxamine
The active form pyridoxal 5'-phosphate (PLP) (depicted) serves as a cofactor in many enzyme reactions mainly in amino acid metabolism including biosynthesis of neurotransmitters.[23]
Vitamin B7 Biotin
Biotin plays a key role in the metabolism of lipids, proteins and carbohydrates. It is a critical co-enzyme of four carboxylases: acetyl CoA carboxylase, which is involved in the synthesis of fatty acids from acetate; pyruvate CoA carboxylase, involved in gluconeogenesis; β-methylcrotonyl CoA carboxylase, involved in the metabolism of leucine; and propionyl CoA carboxylase, which is involved in the metabolism of energy, amino acids and cholesterol.[24]
Vitamin B9 Folate
Folate acts as a co-enzyme in the form of tetrahydrofolate (THF), which is involved in the transfer of single-carbon units in the metabolism of nucleic acids and amino acids. THF is involved in purine and pyrimidine nucleotide synthesis, so is needed for normal cell division, especially during pregnancy and infancy, which are times of rapid growth. Folate also aids in erythropoiesis, the production of red blood cells.[25]
Vitamin B12 Cobalamin
Vitamin B12 is involved in the cellular metabolism of carbohydrates, proteins and lipids. It is essential in the production of blood cells in bone marrow, and for nerve sheaths and proteins.[26] Vitamin B12 functions as a co-enzyme in intermediary metabolism for the methionine synthase reaction with methylcobalamin, and the methylmalonyl CoA mutase reaction with adenosylcobalamin.[27]

Deficiencies

Several named vitamin deficiency diseases may result from the lack of sufficient B vitamins. Deficiencies of other B vitamins result in symptoms that are not part of a named deficiency disease.

VitaminNameDeficiency effects
Vitamin B1 ThiamineThiamine deficiency causes beriberi. Symptoms of this disease of the nervous system include weight loss, emotional disturbances, Wernicke encephalopathy (impaired sensory perception), weakness and pain in the limbs, periods of irregular heartbeat, and edema (swelling of bodily tissues). Heart failure and death may occur in advanced cases. Chronic thiamine deficiency can also cause alcoholic Korsakoff syndrome, an irreversible dementia characterized by amnesia and compensatory confabulation.
Vitamin B2 RiboflavinRiboflavin deficiency can cause ariboflavinosis, which may result in cheilosis (cracks in the lips), high sensitivity to sunlight, angular cheilitis, glossitis (inflammation of the tongue), seborrheic dermatitis or pseudo-syphilis (particularly affecting the scrotum or labia majora and the mouth), pharyngitis (sore throat), hyperemia, and edema of the pharyngeal and oral mucosa.
Vitamin B3 NiacinNiacin deficiency, along with a deficiency of tryptophan, causes pellagra. Symptoms include aggression, dermatitis, insomnia, weakness, mental confusion, and diarrhea. In advanced cases, pellagra may lead to dementia and death (the 3(+1) D's: dermatitis, diarrhea, dementia, and death).
Vitamin B5 Pantothenic acidPantothenic acid deficiency can result in acne and paresthesia, although it is uncommon.
Vitamin B6 Pyridoxine, pyridoxal, pyridoxamineVitamin B6 deficiency causes seborrhoeic dermatitis-like eruptions, pink eye and neurological symptoms (e.g. epilepsy).
Vitamin B7 BiotinBiotin deficiency does not typically cause symptoms in adults, other than cosmetic issues such as decreased hair and nail growth,[28] but may lead to impaired growth and neurological disorders in infants. Multiple carboxylase deficiency, an inborn error of metabolism, can lead to biotin deficiency even when dietary biotin intake is normal.
Vitamin B9 Folic acidFolic acid deficiency results in a macrocytic anemia, and elevated levels of homocysteine. Deficiency in pregnant women can lead to birth defects, particularly neural tube defects such as spina bifida and anencephaly.
Vitamin B12 CobalaminsVitamin B12 deficiency results in a macrocytic anemia, elevated methylmalonic acid and homocysteine, peripheral neuropathy, sense loss, change in mobility, memory loss and other cognitive deficits. It is most likely to occur among elderly people, as absorption through the gut declines with age; the autoimmune disease pernicious anemia is another common cause. It can also cause symptoms of mania and psychosis. untreated, it is possible to cause irreversible damage to the brain and nerve system — In rare extreme cases, paralysis can result.

Side effects

Because water-soluble B vitamins are eliminated in the urine, taking large doses of certain B vitamins usually only produces transient side effects (only exception is pyridoxine). General side effects may include restlessness, nausea and insomnia. These side effects are almost always caused by dietary supplements and not foodstuffs.

VitaminTolerable Upper Intake Level (UL)Harmful effects
Vitamin B1 None[29]No known toxicity from oral intake. There are some reports of anaphylaxis caused by high-dose thiamin injections into the vein or muscle. However, the doses were greater than the quantity humans can physically absorb from oral intake.[29]
Vitamin B2 None[30]No evidence of toxicity based on limited human and animal studies. The only evidence of adverse effects associated with riboflavin comes from in vitro studies showing the production of reactive oxygen species (free radicals) when riboflavin was exposed to intense visible and UV light.[30]
Vitamin B3 US UL = 35 mg as a dietary supplement[31]Intake of 3000 mg/day of nicotinamide and 1500 mg/day of nicotinic acid are associated with nausea, vomiting, and signs and symptoms of liver toxicity. Other effects may include glucose intolerance, and (reversible) ocular effects. Additionally, the nicotinic acid form may cause vasodilatory effects, also known as flushing, including redness of the skin, often accompanied by an itching, tingling, or mild burning sensation, which is also often accompanied by pruritus, headaches, and increased intracranial blood flow, and occasionally accompanied by pain.[31] Medical practitioners prescribe recommended doses up to 2000 mg per day of niacin in either immediate-release or slow-release formats, to lower plasma triglycerides and low-density lipiprotein cholesterol.[32]
Vitamin B5 NoneNo toxicity known.
Vitamin B6 US UL = 100 mg/day; EU UL = 25 mg/daySee Megavitamin-B6 syndrome for more information.
Vitamin B7 NoneNo toxicity known.
Vitamin B9 1 mg/day[33]Masks B12 deficiency, which can lead to permanent neurological damage.[33]
Vitamin B12 None established[34]Skin and spinal lesions. Acne-like rash [causality is not conclusively established].[34][35]

Discovery

VitaminNameDiscovererDateNotes
Vitamin B1 ThiamineUmetaro Suzuki1910Failed to gain publicity.
Casimir Funk1912
Vitamin B2 RiboflavinD.T Smith and E.G Hendrick 1926Max Tishler invented methods for synthesizing it.
Vitamin B3 NiacinConrad Elvehjem1937
Vitamin B5 Pantothenic acidRoger J. Williams1933
Vitamin B6 Pyridoxine etc.Paul Gyorgy1934
Vitamin B7 BiotinResearch by multiple independent groups in the early 1900s; credits for discovery include Margaret Averil Boas (1927),[36] Paul Gyorgy (1939, as Vitamin H),[37] and Dean Burk.[38]
Vitamin B9 Folic acidLucy Wills1933
Vitamin B12 CobalaminsFive people have been awarded Nobel Prizes for direct and indirect studies of vitamin B12: George Whipple, George Minot and William Murphy (1934), Alexander R. Todd (1957), and Dorothy Hodgkin (1964).[39]

Many of the following substances have been referred to as vitamins as they were once believed to be vitamins. They are no longer considered as such, and the numbers that were assigned to them now form the "gaps" in the true series of B-complex vitamins described above (for example, there is no vitamin B4). Some of them, though not essential to humans, are essential in the diets of other organisms; others have no known nutritional value and may even be toxic under certain conditions.

  • Vitamin B4: can refer to the distinct chemicals choline, adenine, or carnitine.[40][41]
    • Choline is synthesized by the human body, but not sufficiently to maintain good health, and is now considered an essential dietary nutrient.[42]
    • Adenine is a nucleobase synthesized by the human body.[43]
    • Carnitine is an essential dietary nutrient for certain worms, but not for humans.[44]
  • Vitamin B8: adenosine monophosphate (AMP), also known as adenylic acid.[45] Vitamin B8 may also refer to inositol.[46]
  • Vitamin B10: para-aminobenzoic acid (pABA or PABA), a chemical component of the folate molecule produced by plants and bacteria, and found in many foods.[47][48] It is best known as a UV-blocking sunscreen applied to the skin, and is sometimes taken orally for certain medical conditions.[47][49]
  • Vitamin B11: pteroylheptaglutamic acid (PHGA; chick growth factor). Vitamin Bc-conjugate was also found to be identical to PHGA. Derivative of folate ("pteroylmonoglutamic acid" in this nomenclature).[50]
  • Vitamin B13: orotic acid.[51]
  • Vitamin B14: cell proliferant, anti-anemia, rat growth factor, and antitumor pterin phosphate, named by Earl R. Norris. Isolated from human urine at 0.33ppm (later in blood), but later abandoned by him as further evidence did not confirm this. He also claimed this was not xanthopterin.
  • Vitamin B15: pangamic acid,[51] also known as pangamate. Promoted in various forms as a dietary supplement and drug; considered unsafe and subject to seizure by the US Food and Drug Administration.[52]
  • Vitamin B16: dimethylglycine (DMG)[53] is synthesized by the human body from choline.
  • Vitamin B17: pseudoscientific name for the poisonous compound amygdalin, also known as the equally pseudoscientific name "nitrilosides" despite the fact that it is a single compound. Amygdalin can be found in various plants, but is most commonly extracted from apricot pits and other similar fruit kernels. Amygdalin is hydrolyzed by various intestinal enzymes to form, among other things, hydrogen cyanide, which is toxic to human beings when exposed to a high enough dosage. Some proponents claim that amygdalin is effective in cancer treatment and prevention, despite its toxicity and a severe lack of scientific evidence.[54]
  • Vitamin B20: L-carnitine.[53]
  • Vitamin Bf: carnitine.[45]
  • Vitamin Bm: myo-inositol, also called "mouse antialopaecia factor".[55]
  • Vitamin Bp: "antiperosis factor", which prevents perosis, a leg disorder, in chicks; can be replaced by choline and manganese salts.[44][45][56]
  • Vitamin BT: carnitine.[57][44]
  • Vitamin Bv: a type of B6 other than pyridoxine.
  • Vitamin BW: a type of biotin other than d-biotin.
  • Vitamin Bx: an alternative name for both pABA (see vitamin B10) and pantothenic acid.[44][49]

See also

References

  1. 1 2 3 4 "B vitamins". MedlinePlus, US National Library of Medicine. 28 September 2020. Retrieved 12 October 2020.
  2. Stipanuk, M.H. (2006). Biochemical, physiological, molecular aspects of human nutrition (2nd ed.). St Louis: Saunders Elsevier. p. 667. ISBN 9781416002093.
  3. Winkler C, Wirleitner B, Schroecksnadel K, Schennach H, Fuchs D (March 2006). "Beer down-regulates activated peripheral blood mononuclear cells in vitro". International Immunopharmacology. 6 (3): 390–5. doi:10.1016/j.intimp.2005.09.002. PMID 16428074.
  4. Hoyumpa AM (December 1980). "Mechanisms of thiamin deficiency in chronic alcoholism". The American Journal of Clinical Nutrition. 33 (12): 2750–61. doi:10.1093/ajcn/33.12.2750. PMID 6254354.
  5. Leevy CM (1982). "Thiamin deficiency and alcoholism". Annals of the New York Academy of Sciences. 378 (Thiamin: Twenty Years of Progress): 316–26. Bibcode:1982NYASA.378..316L. doi:10.1111/j.1749-6632.1982.tb31206.x. PMID 7044226. S2CID 32614632.
  6. Pinto J, Huang YP, Rivlin RS (May 1987). "Mechanisms underlying the differential effects of ethanol on the bioavailability of riboflavin and flavin adenine dinucleotide". The Journal of Clinical Investigation. 79 (5): 1343–8. doi:10.1172/JCI112960. PMC 424383. PMID 3033022.
  7. Spivak JL, Jackson DL (June 1977). "Pellagra: an analysis of 18 patients and a review of the literature". The Johns Hopkins Medical Journal. 140 (6): 295–309. PMID 864902.
  8. Said HM, Sharifian A, Bagherzadeh A, Mock D (December 1990). "Chronic ethanol feeding and acute ethanol exposure in vitro: effect on intestinal transport of biotin". The American Journal of Clinical Nutrition. 52 (6): 1083–6. doi:10.1093/ajcn/52.6.1083. PMID 2239786.
  9. Halsted C (1990). Picciano MF, Stokstad EL, Gregory JF (eds.). Intestinal absorption of dietary folates (in Folic acid metabolism in health and disease). Contemporary Issues in Clinical Nutrition. New York, New York: Wiley-Liss. pp. 23–45. ISBN 978-0-471-56744-8.
  10. Watson R, Watzl B, eds. (September 1992). Nutrition and alcohol. CRC Press. pp. 16–18. ISBN 978-0-8493-7933-8.
  11. Craig WJ (May 2009). "Health effects of vegan diets". The American Journal of Clinical Nutrition. 89 (5): 1627S–1633S. doi:10.3945/ajcn.2009.26736N. PMID 19279075.
  12. Herbert V (September 1988). "Vitamin B-12: plant sources, requirements, and assay". The American Journal of Clinical Nutrition. 48 (3 Suppl): 852–8. doi:10.1093/ajcn/48.3.852. PMID 3046314. Archived from the original on 24 February 2008.
  13. 1 2 Woolston C (July 14, 2008). "B vitamins don't boost energy drinks' power". Los Angeles Times. Archived from the original on 19 October 2008. Retrieved 2008-10-08.
  14. "Vitamin B injections mentioned". Archived from the original on 2008-07-03. Retrieved 2008-07-29.
  15. Thornalley PJ, Babaei-Jadidi R, Al Ali H, Rabbani N, Antonysunil A, Larkin J, et al. (October 2007). "High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease". Diabetologia. 50 (10): 2164–70. doi:10.1007/s00125-007-0771-4. PMC 1998885. PMID 17676306.
  16. Shaw GM, Schaffer D, Velie EM, Morland K, Harris JA (May 1995). "Periconceptional vitamin use, dietary folate, and the occurrence of neural tube defects". Epidemiology. 6 (3): 219–26. doi:10.1097/00001648-199505000-00005. PMID 7619926. S2CID 2740838.
  17. Fattal-Valevski A (2011). "Thiamin (vitamin B1)". Journal of Evidence-Based Complementary & Alternative Medicine. 16 (1): 12–20. doi:10.1177/1533210110392941. S2CID 71436117.
  18. Guide to Nutritional Supplements. Academic Press. 2009-09-02. ISBN 978-0-12-375661-9.
  19. Whitney N, Rolfes S, Crowe T, Cameron-Smith D, Walsh A (2011). Understanding Nutrition. Melbourne: Cengage Learning.
  20. National Academy of Sciences. Institute of Medicine. Food and Nutrition Board, ed. (1998). "Chapter 6 - Niacin". Dietary Reference Intakes for Tjiamine, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin and Choline. Washington, DC: National Academy Press.
  21. Schnepp, Zoe (2002). "Pantothenic Acid". University of Bristol. Retrieved 16 September 2012 via bris.ac.uk.
  22. Gropper S, Smith J (2009). Advanced nutrition and human metabolism. Belmont, California: Cengage Learning.
  23. "Vitamin B6". Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis, OR. May 2014. Archived from the original on 2018-03-14. Retrieved 7 March 2017.
  24. Schnepp, Zoe (2002). "Biotin". University of Bristol. Retrieved 17 September 2012 via bris.ac.uk.
  25. National Academy of Sciences. Institute of Medicine. Food and Nutrition Board, ed. (1998). "Chapter 8 - Folate". Dietary Reference Intakes for Thiamine, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin and Choline. Washington, DC: National Academy Press.
  26. Schnepp, Zoe (2002). "Vitamin B12". University of Bristol. Retrieved 16 September 2012 via bris.ac.uk.
  27. Sardesai, Vishwanath (2003-04-11). Introduction to Clinical Nutrition. CRC Press. ISBN 978-0-203-91239-3.
  28. "Biotin for Hair Growth: Does It Work?". 4 April 2021.
  29. 1 2 National Academy of Sciences. Institute of Medicine. Food and Nutrition Board., ed. (1998). "Chapter 4 - Thiamin". Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, D.C.: National Academy Press. pp. 58–86. ISBN 978-0-309-06411-8. Archived from the original (PDF) on 18 June 2009. Retrieved 2009-06-17.
  30. 1 2 National Academy of Sciences. Institute of Medicine. Food and Nutrition Board., ed. (1998). "Chapter 5 - Riboflavin". Dietary Reference Intakes for Thiamine, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, D.C.: National Academy Press. pp. 87–122. ISBN 978-0-309-06411-8. Archived from the original (PDF) on 18 June 2009. Retrieved 2009-06-17.
  31. 1 2 National Academy of Sciences. Institute of Medicine. Food and Nutrition Board., ed. (1998). "Chapter 6 - Niacin". Dietary Reference Intakes for Thiamine, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, D.C.: National Academy Press. pp. 123–149. ISBN 978-0-309-06411-8. Archived from the original (PDF) on 18 June 2009. Retrieved 2009-06-17.
  32. "Niaspan" (PDF). www.rxabbott.com.
  33. 1 2 National Academy of Sciences. Institute of Medicine. Food and Nutrition Board., ed. (1998). "Chapter 8 - Folate". Dietary Reference Intakes for Thiamine, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, D.C.: National Academy Press. pp. 196–305. ISBN 978-0-309-06411-8. Archived from the original (PDF) on 18 June 2009. Retrieved 2009-06-17.
  34. 1 2 National Academy of Sciences. Institute of Medicine. Food and Nutrition Board., ed. (1998). "Chapter 9 - Vitamin B12". Dietary Reference Intakes for Thiamine, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, D.C.: National Academy Press. p. 346. ISBN 978-0-309-06411-8. Archived from the original (PDF) on 11 October 2010. Retrieved 2010-09-23.
  35. Dupré A, Albarel N, Bonafe JL, Christol B, Lassere J (August 1979). "Vitamin B-12 induced acnes". Cutis. 24 (2): 210–1. PMID 157854.
  36. Food and Nutrition Board, Institute of Medicine (1998). "Biotin". Dietary Reference Intakes: Thiamin, Riboflavin, Niacin, Vitamin B6, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, DC: National Academy Press. pp. 374–389.
  37. Gyorgy P (December 1939). "The Curative Factor (vitamin H) for Egg White Injury, with Particular Reference to Its Presence in Different Foodstuffs and in Yeast". Journal of Biological Chemistry. 131 (2): 733–744. doi:10.1016/S0021-9258(18)73468-6.
  38. "Dean Burk, 84, Chemist for Cancer Institute". The New York Times. Associated Press. October 10, 1988. p. B8.
  39. "The Nobel Prize and the Discovery of Vitamins". www.nobelprize.org. Archived from the original on 2018-01-16. Retrieved 2018-02-15.
  40. Navarra T (1 January 2004). The Encyclopedia of Vitamins, Minerals, and Supplements. Infobase Publishing. p. 155. ISBN 978-1-4381-2103-1.
  41. Lundblad RL, Macdonald F (30 July 2010). Handbook of Biochemistry and Molecular Biology (Fourth ed.). CRC Press. pp. 251–. ISBN 978-1-4200-0869-2.
  42. Zeisel SH, da Costa KA (November 2009). "Choline: an essential nutrient for public health". Nutrition Reviews. 67 (11): 615–23. doi:10.1111/j.1753-4887.2009.00246.x. PMC 2782876. PMID 19906248.
  43. Reader V (1930). "The assay of vitamin B(4)". The Biochemical Journal. 24 (6): 1827–31. doi:10.1042/bj0241827. PMC 1254803. PMID 16744538.
  44. 1 2 3 4 Bender DA (29 January 2009). A Dictionary of Food and Nutrition. Oxford University Press. p. 521. ISBN 978-0-19-157975-2.
  45. 1 2 3 Berdanier CD, Dwyer JT, Feldman EB (24 August 2007). Handbook of Nutrition and Food (Second ed.). CRC Press. p. 117. ISBN 978-1-4200-0889-0.
  46. "Vitamin B8 (Inositol) Overview Information". WebMD.com. WebMD, LLC.
  47. 1 2 "Vitamin B10 (Para–aminobenzoic acid (PABA)): uses, side effects, interactions and warnings". WebMD.com. WebMD, LLC. Retrieved 24 January 2014.
  48. Capozzi V, Russo P, Dueñas MT, López P, Spano G (December 2012). "Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products" (PDF). Applied Microbiology and Biotechnology. 96 (6): 1383–94. doi:10.1007/s00253-012-4440-2. PMID 23093174. S2CID 1162368.
  49. 1 2 "Para-aminobenzoic acid". Medline Plus Medical Encyclopedia. United States National Institutes of Health. Retrieved 24 January 2014.
  50. SPIES, TD; GARCIA LOPEZ, G (1947). "A comparative study of the effectiveness of synthetic folic acid, pteroyldiglutamic acid, pteroyltriglutamic acid and pteroylheptaglutamic acid (Bc conjugate)". Internationale Zeitschrift fur Vitaminforschung. International journal of vitamin research. Journal international de vitaminologie. 19 (1–2): 1–12. PMID 18905002.
  51. 1 2 Herbert V, Subak-Sharpe GJ (15 February 1995). Total Nutrition: The Only Guide You'll Ever Need - From The Icahn School of Medicine at Mount Sinai. St. Martin's Press. p. 98. ISBN 978-0-312-11386-5.
  52. "CPG Sec. 457.100 Pangamic Acid and Pangamic Acid Products Unsafe for Food and Drug Use". Compliance Policy Guidance Manual. US Food and Drug Administration. March 1995. Retrieved 25 January 2014.
  53. 1 2 Velisek J (24 December 2013). The Chemistry of Food. Wiley. p. 398. ISBN 978-1-118-38383-4.
  54. Lerner IJ (February 1984). "The whys of cancer quackery". Cancer. 53 (3 Suppl): 815–9. doi:10.1002/1097-0142(19840201)53:3+<815::AID-CNCR2820531334>3.0.CO;2-U. PMID 6362828.
  55. Velisek J (24 December 2013). The Chemistry of Food. Wiley. p. 209. ISBN 978-1-118-38383-4.
  56. Bender DA (11 September 2003). Nutritional Biochemistry of the Vitamins. Cambridge University Press. p. 5. ISBN 978-1-139-43773-8.
  57. Carter HE, Bhattacharyya PK, Weidman KR, Fraenkel G (July 1952). "Chemical studies on vitamin BT isolation and characterization as carnitine". Archives of Biochemistry and Biophysics. 38 (1): 405–16. doi:10.1016/0003-9861(52)90047-7. PMID 12997117.
This article is issued from Offline. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.