Wastewater surveillance

Wastewater surveillance is the process of monitoring wastewater for contaminants. Amongst other uses, it can be used for biosurveillance, to detect the presence of pathogens in local populations,[1] and to detect the presence of psychoactive drugs.[2]

One example of this is the use of wastewater monitoring to detect the presence of the SARS-CoV-2 virus in populations during the COVID-19 pandemic.[3][4][5] In one study, wastewater surveillance showed signs of SARS-CoV-2 RNA before any cases were detected in the local population.[6]

Later in the pandemic, wastewater surveillance was demonstrated to be one technique to detect SARS-CoV-2 variants[7] and to monitor their spread in regions for studying related ongoing infection dynamics.[8][9][10] Comparison between case based epidemiological records and deep-sequenced wastewater samples validated that the composition of the virus population in the wastewater is in strong agreement with the virus variants circulating in the infected population.[11]

See also

References

  1. Sinclair, Ryan G.; Choi, Christopher Y.; Riley, Mark R.; Gerba, Charles P. (2008). "Pathogen Surveillance Through Monitoring of Sewer Systems". Advances in Applied Microbiology. 65: 249–269. doi:10.1016/S0065-2164(08)00609-6. ISBN 9780123744296. ISSN 0065-2164. PMC 7112011. PMID 19026868.
  2. Sulej-Suchomska, Anna Maria; Klupczynska, Agnieszka; Dereziński, Paweł; Matysiak, Jan; Przybyłowski, Piotr; Kokot, Zenon J. (2020-03-17). "Urban wastewater analysis as an effective tool for monitoring illegal drugs, including new psychoactive substances, in the Eastern European region". Scientific Reports. 10 (1): 4885. Bibcode:2020NatSR..10.4885S. doi:10.1038/s41598-020-61628-5. ISSN 2045-2322. PMC 7078280. PMID 32184422.
  3. "These Scientists Are Sewer-Diving in an Attempt to Detect Silent COVID-19 Outbreaks". Time. 2 August 2020. Retrieved 2020-08-04.
  4. Daughton, Christian G. (2020-09-20). "Wastewater surveillance for population-wide Covid-19: The present and future". Science of the Total Environment. 736: 139631. Bibcode:2020ScTEn.736m9631D. doi:10.1016/j.scitotenv.2020.139631. ISSN 0048-9697. PMC 7245244. PMID 32474280.
  5. shaswat.koirala@nist.gov (2020-05-21). "A NIST-Hosted Webinar on Measuring SARS-CoV-2 in Wastewater and Fecal Material: A Call for Standards". NIST. Retrieved 2020-08-04.
  6. Randazzo, Walter; Truchado, Pilar; Cuevas-Ferrando, Enric; Simón, Pedro; Allende, Ana; Sánchez, Gloria (2020-08-15). "SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area". Water Research. 181: 115942. doi:10.1016/j.watres.2020.115942. ISSN 0043-1354. PMC 7229723. PMID 32425251.
  7. Smyth, Davida S.; Trujillo, Monica; Gregory, Devon A.; Cheung, Kristen; Gao, Anna; Graham, Maddie; Guan, Yue; Guldenpfennig, Caitlyn; Hoxie, Irene; Kannoly, Sherin; Kubota, Nanami; Lyddon, Terri D.; Markman, Michelle; Rushford, Clayton; San, Kaung Myat; Sompanya, Geena; Spagnolo, Fabrizio; Suarez, Reinier; Teixeiro, Emma; Daniels, Mark; Johnson, Marc C.; Dennehy, John J. (3 February 2022). "Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater". Nature Communications. 13 (1): 635. Bibcode:2022NatCo..13..635S. doi:10.1038/s41467-022-28246-3. ISSN 2041-1723. PMC 8813986. PMID 35115523.
  8. Galani, Aikaterini; Aalizadeh, Reza; Kostakis, Marios; Markou, Athina; Alygizakis, Nikiforos; Lytras, Theodore; Adamopoulos, Panagiotis G.; Peccia, Jordan; Thompson, David C.; Kontou, Aikaterini; Karagiannidis, Apostolos; Lianidou, Evi S.; Avgeris, Margaritis; Paraskevis, Dimitrios; Tsiodras, Sotirios; Scorilas, Andreas; Vasiliou, Vasilis; Dimopoulos, Meletios-Athanasios; Thomaidis, Nikolaos S. (January 2022). "SARS-CoV-2 wastewater surveillance data can predict hospitalizations and ICU admissions". Science of the Total Environment. 804: 150151. Bibcode:2022ScTEn.804o0151G. doi:10.1016/j.scitotenv.2021.150151. PMC 8421077. PMID 34623953.
  9. Baaijens, Jasmijn A.; Zulli, Alessandro; Ott, Isabel M.; Petrone, Mary E.; Alpert, Tara; Fauver, Joseph R.; Kalinich, Chaney C.; Vogels, Chantal B. F.; Breban, Mallery I.; Duvallet, Claire; McElroy, Kyle; Ghaeli, Newsha; Imakaev, Maxim; Mckenzie-Bennett, Malaika; Robison, Keith; Plocik, Alex; Schilling, Rebecca; Pierson, Martha; Littlefield, Rebecca; Spencer, Michelle; Simen, Birgitte B.; Hanage, William P.; Grubaugh, Nathan D.; Peccia, Jordan; Baym, Michael (2 September 2021). "Variant abundance estimation for SARS-CoV-2 in wastewater using RNA-Seq quantification". MedRxiv: The Preprint Server for Health Sciences: 2021.08.31.21262938. doi:10.1101/2021.08.31.21262938. PMC 8423229. PMID 34494031.
  10. Heijnen, Leo; Elsinga, Goffe; Graaf, Miranda de; Molenkamp, Richard; Koopmans, Marion P. G.; Medema, Gertjan (26 March 2021). "Droplet Digital RT-PCR to detect SARS-CoV-2 variants of concern in wastewater": 2021.03.25.21254324. doi:10.1101/2021.03.25.21254324. S2CID 232361804. {{cite journal}}: Cite journal requires |journal= (help)
  11. Amman, Fabian; Markt, Rudolf (2022). "Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale". Nat Biotechnol. doi:10.1038/s41587-022-01387-y. PMID 35851376. S2CID 250642091.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.