قاعدة لايبنتز للتكامل

قاعدة لايبنتز للتكامل هي قاعدة رياضياتية في حساب التفاضل والتكامل  سميت تيمنا بغوتفريد لايبنتز، والتي تقول أن كل تكامل على شاكلة:

حيث أن   مشتقته  بالشكل التالي:

حيث آن المشتق الجزئي يدل على أن ما داخل التكامل يمكن الأخذ به عندما يكون المتغير f(x, t) x يعتبر في اتخاذ مشتق.[1] لاحظ أنه إذا كان كلا من و ثوابت، بمعنى أنّ و ، فسنحصل على التعبير التّالي:

حالة الأبعاد الثلاثة التي تعتمد على الزمن

الشكل 1: حقل متجه F(r, t) محددة في جميع أنحاء الفضاء, سطح Σ يحدها منحنى ∂Σ تتحرك مع سرعة v على حقل دمج.

ان قاعدة لايبنتز للأبعاد الثنائية هي:[2]

حيث أن:

F(r, t) هو حقل متجه في موقف المكاني r في الوقت t,
Σ هو سطح متنقل في مساحة ثلاثية يحدها منحنى مغلق ∂Σ ،
dA هو متجه عنصر من سطح Σ،
ds هو متجه عنصر من منحنى ∂Σ،
v هي سرعة الحركة من المنطقة Σ،
∇⋅ هو متجه الاختلاف،
× هو متجه عبر المنتج،
إن ضعف التكامل هي التكاملات السطحية على سطح Σ و خط متكامل على إحاطة منحنى ∂Σ.

الأبعاد العليا

يمكن تمديد قانون ليبنيز ليشمل تكاملات في أبعاد متعددة. تسمى في حالة البعدين والثلاثة بمجال ديناميات السوائل كما في نظرية رينولدز للنقل:

انظر أيضًا

المراجع

  1. Protter, Murray H.؛ Morrey, Charles B., Jr. (1985)، "Differentiation under the Integral Sign"، Intermediate Calculus (ط. Second)، Springer، ص. 421–426، ISBN 0-387-96058-9.
  2. Flanders, Harly (يونيو–يوليو 1973)، "Differentiation under the integral sign" (PDF)، الرياضيات الأمريكية الشهرية، 80 (6): 615–627، doi:10.2307/2319163، JSTOR 2319163، مؤرشف من الأصل (PDF) في 20 سبتمبر 2018.

مزيد من القراءة

  • Frederick S. Woods (1934)، Advanced Calculus (ط. New)، Ginn and Company، ASIN B0006AMNBI.
  • Frederick S. Woods (1926)، Advanced Calculus (ط. 1st)، Ginn and Company، ASIN B00085L67S.
  • David V. Widder (يوليو 1990)، Advanced Calculus (ط. New)، Dover Publications Inc.، ISBN 978-0-486-66103-2.
  • بوابة تحليل رياضي
  • بوابة رياضيات
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.